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Comparison of Population-Averaged and Subject-Specific Approaches for
Analyzing Repeated Binary Outcomes

Frank B. Hu,1 Jack Goldberg,2 Donald Hedeker,2'3 Brian Ft. Flay,3 and Mary Ann Pentz4

Several approaches have been proposed to model binary outcomes that arise from longitudinal studies.
Most of the approaches can be grouped into two classes: the population-averaged and subject-specific
approaches. The generalized estimating equations (GEE) method is commonly used to estimate population-
averaged effects, while random-effects logistic models can be used to estimate subject-specific effects.
However, it is not clear to many epidemiologists how these two methods relate to one another or how these
methods relate to more traditional stratified analysis and standard logistic models. The authors address these
issues in the context of a longitudinal smoking prevention trial, the Midwestern Prevention Project. In
particular, the authors compare results from stratified analysis, standard logistic models, conditional logistic
models, the GEE models, and random-effects models by analyzing a binary outcome from two and seven
repeated measurements, respectively. In the comparison, the authors focus on the interpretation of both
time-varying and time-invariant covariates under different models. Implications of these methods for epide-
miologic research are discussed. Am J Epidemiol 1998; 147:694-703.

generalized estimating equations; longitudinal studies; random-effects regression models; repeated
measurement

Repeated measures designs or longitudinal studies
occupy an important role in clinical and epidemiologic
research. In a clinical trial, for example, patients may
be randomly assigned to different treatment conditions
and repeatedly classified in terms of presence or ab-
sence of clinical improvement, side effects, or specific
symptoms. Most adolescent smoking prevention trials
involve a baseline measure of smoking behaviors and
related factors, followed by an intervention program,
an immediate posttest, and several follow-up measure-
ments. This kind of design offers the opportunity to
study the time course of change and the long-term
effects of the treatment or intervention (1). It also
offers increased statistical power and robustness for
model selection (2).
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Analyses of repeated measures data need to accom-
modate the statistical dependence among the repeated
observations within subjects. For normally distributed
data, variants of the random-effects model of Laird
and Ware (3) are commonly used, and software for
estimating this class of models is now widely avail-
able, such as SAS Proc Mixed (4), BMDP5V (5),
HLM (6), and MLn (7).

Recently, several models have been proposed to
model binary outcomes that arise from repeated mea-
sures designs. Most of the models can be grouped
into two classes (8, 9): the "subject-specific" and the
"population-averaged" approaches. Random-effects
logistic models (10, 11) are commonly used to esti-
mate subject-specific effects, while the generalized
estimating equations (GEE) method of Liang and
Zeger (12) is usually used to provide population-
averaged effects.

While both the GEE and random-effects approaches
are extensions of models for independent observations
to time-dependent data, they address the problem of
time-dependency differently. Also, the regression co-
efficients or odds ratios obtained from the two ap-
proaches are numerically different, as are their inter-
pretations (8, 13, 14). Although comparisons of the
two approaches have appeared in the statistical litera-
ture (9, 15-18), there has been little research on such
comparisons that is accessible to public health re-
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searchers. In addition, researchers in substantive areas
are often unclear as to how these models relate to
statistical methods or models with which they are
already familiar (e.g., stratified analysis or the stan-
dard logistic model). The purposes of this paper in-
clude 1) describing and comparing the main features
of random-effects logistic models and GEE logistic
models in the context of population-averaged and sub-
ject-specific approaches; 2) showing the connection
between these models and conventional epidemiologic
methods, such as stratified analysis and standard lo-
gistic models; and 3) illustrating the use and interpre-
tation of random-effects and GEE logistic models in
comparison with each other and in comparison with
usual logistic models by re-analyzing a longitudinal
smoking prevention dataset with multiple timepoints.

The remainder of this paper is organized as follows.
We first discuss the main features of population-
averaged and subject-specific approaches for binary
data. Then we describe the dataset from a smoking and
drug abuse prevention study, the Midwestern Preven-
tion Project (MPP) (19). To compare models, we first
analyze the data considering only two timepoints
(baseline and one-year follow-up). Finally, we present
and compare results from standard logistic, GEE, and
random-effects models by analyzing data from seven
timepoints. We discuss the implications of these meth-
ods for epidemiologic research. In the Appendix, we
provide details of the programs we used to fit the GEE
and random-intercept logistic models in this paper.

THE POPULATION-AVERAGED APPROACH

To estimate treatment effects in a longitudinal pre-
vention trial, we consider the following model:

PrQ* = 1)
(lyty

Var(^) = H{\ - N),

(1)

(2)

where Yy denotes a binary outcome (i.e., smoking, 0 =
no and 1 = yes) for subject i at time j , fiy = E{Y^
denotes the expectation or the mean of the response, xt

denotes the treatment group (0 = control, 1 = treat-
ment) for subject i, and ty denotes the time correspond-
ing to the jth measurement for subject i. Equation 1
assumes a linear relation between the log odds of
response and both time and treatment group; equation
2 indicates that the variance of the binary response is
a known function of its mean. In this model, exp(/3,)
is the odds of an event at time j divided by the odds at
time j — 1, controlling for treatment group, while
exp(/32) is the odds of the event among subjects in the

treatment group divided by the odds among subjects in
the control group, controlling for time. Because both
exp^,) and exp(/32) are ratios of subpopulation risk,
they are referred to as population-averaged effects. In
other words, the estimate of time effects 03,) does not
distinguish between observations belonging to the
same or different subjects.

Traditional epidemiologic methods such as stratified
analysis (i.e., Mantel-Haenszel method (20)) and stan-
dard logistic models for independent binary outcomes
(21) are essentially population-averaged approaches.
However, these methods are usually not appropriate
for correlated binary outcomes arising from longitudi-
nal studies due to the dependency of the repeated
measurements. For longitudinal data, Liang and Zeger
(12) proposed the generalized estimating equations
(GEE) approach, which is an extension of generalized
linear models (GLM) (22), to estimate the population-
averaged estimates while accounting for the depen-
dency between the repeated measurements. Specifi-
cally, the dependency or correlation between repeated
measures is taken into account by robust estimation of
the variances of the regression coefficients. In fact, the
GEE approach treats the time dependency as a nui-
sance, and a "working" correlation matrix for the
vector of repeated observations from each subject is
specified to account for the dependency among the
repeated observations. The "working correlation" is
assumed to be the same for all subjects, reflecting
average dependence among the repeated observations
over subjects. Several "working" correlation structures
can be specified, including independent, exchange-
able, autoregressive, and unstructured. An indepen-
dent working correlation assumes zero correlations
between repeated observations. An exchangeable
working correlation assumes uniform correlations
across time. An autoregressive working correlation
assumes that observations are only related to their own
past values through first or higher order autoregressive
(AR) process. An unstructured working correlation
assumes unconstrained pairwise correlations. Liang
and Zeger (12) show that under the assumption of
missing completely at random (MCAR, discussed be-
low), the GEE approach provides consistent estimators
of the regression coefficients and of their robust vari-
ances even if the assumed working correlation is mis-
specified.

Estimation of the standard logistic model is equiv-
alent to GEE estimation with an independent working
correlation structure. With repeated binary outcomes,
the standard logistic model yields the same population-
averaged estimates as the GEE. However, the standard
errors from the standard logistic models are biased
because the independence assumption is violated. The
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biases are dependent on whether the covariates vary
with time (23, 24). Regression models ignoring the
time dependency tend to overestimate the standard
errors of time-varying covariates and underestimate
the standard errors of time-invariant covariates.

THE SUBJECT-SPECIFIC APPROACH

In contrast to the population-averaged approach, the
subject-specific approach can distinguish observations
belonging to the same or different subjects. Random-
effect models are commonly used to estimate subject-
specific effects. Two methods can be used to estimate
the subject-specific effects in the random-effects mod-
els: maximum likelihood and conditional likelihood
procedures (25).

For repeated binary responses, logistic regression
models (10, 11), probit regression models (26), and
log-linear type models (27) have been proposed. A
simple random-effects logistic model for estimating
treatment effects in a longitudinal prevention trial can
be written as:

v.)
(3)

where u, is the random subject deviation.
This model is a generalization of the standard logis-

tic model in which the intercept (deviation), u(, is
allowed to vary with subjects. Thus, the model is often
called a random-intercept logistic model. The random
effect is usually assumed to be distributed as N (0,
aj). The fixed part /30 represents the log odds of the
response {Ytj = 1 ) for a control subject (i.e., x = 0) at
baseline (i.e., t = 0) with random effect u, = 0.

By including a random-intercept in the model, the
interdependencies among the repeated observations
within subjects are explicitly taken into account. The
variance-covariance structure in a random-intercept
logistic model is analogous to the "compound symme-
try" form assumed in a mixed-model analysis of vari-
ance (ANOVA) and the "exchangeable working cor-
relation" in the GEE model described previously. As
with the standard logistic model, likelihood ratio tests
and/or Wald tests can be used to assess the treatment
or time effects. The test in the random-effects model,
however, is performed while accounting for the inter-
dependency among the repeated observations within
subjects.

The interpretation of e13 for a binary independent
variable in a random-effects logistic model is some-
what different from that in a standard logistic model
(9). With the standard logistic model, the baseline risk
is simply the proportion of positive responses in the
control group at baseline (e^0), while in the random-

intercept logistic model, the baseline risk is assumed
to follow a distribution (eft+1i). Therefore, the corre-
sponding change in absolute risk with and without the
covariate varies from one subject to another, depend-
ing on the baseline rate. Consequently, the odds ratios
estimated from a random-effects logistic model addi-
tionally adjust for heterogeneity of the subjects, which
can be considered to be due to unmeasured variables
such as genetic predisposition and unobserved influ-
ences of social environmental factors. In the example
from the smoking prevention project that follows, we
can think of the random intercept as a subject's pro-
pensity to smoke (across the study timepoints) that is
independent of the effects of the model covariates. In
a random intercept model, this propensity is assumed
to be constant across time. However, by including
additional random subject-effects into the model, this
propensity can vary across time. The unobserved pro-
pensity to smoke can reflect subjects' different genetic
predispositions and/or unmeasured social environmen-
tal influences particular to a given subject. For this
reason, the random effects are sometimes thought of as
an omitted subject-varying covariate (9). Further dis-
cussion on the philosophical detail concerning use of
random effects models can be found in Longford (28).

Because the estimated effects are adjusted for indi-
vidual differences, they are often termed "subject-
specific" effects. Therefore, the odds ratios estimated
from the random-effects models should be interpreted
in terms of the change due to the covariates for a single
individual (or, more specifically, individuals with the
same level on the random subject effect vt) even if the
variable is indeed a between-subjects factor such as
treatment group (8). Thus, the random-effects model is
most useful when inference about individual differ-
ences is of major interest.

The interpretation of a within-subject factor such as
time is further complicated by missing data. For a
balanced design (i.e., no missing data), the time effects
are purely within-subject effects. With missing data,
however, the time effects include both between-
subject and within-subject components. Generally this
does not impose a problem for interpretation if certain
missing data assumptions are met. As Laird (29)
points out, random-effects models using maximum
likelihood estimation provide valid inferences in the
presence of ignorable non-response. By ignorable non-
response, it is meant that the probability of missing-
ness is dependent on measured covariates and/or pre-
viously observed values of the outcome. In this
situation, the time trend for subjects with missing
observations is estimated by "borrowing" strength
from subjects with the same or similar characteristics.

While maximum marginal likelihood methods can
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be used to estimate the parameters of the general
random-effects logistic model (30), for the random-
intercept model, some of the parameters can be esti-
mated using conditional likelihood methods (25). To
obtain a consistent estimate of the vector of coeffi-
cients |3, the conditional likelihood is given by:

11,(1 + exp( - D' \ - l (4)

where D, is the within-subject difference in terms of
the covariates. Through the conditional likelihood ap-
proach, the /30 + Ui? parameters in equation 3 are re-
moved by conditioning on their sufficient statistics in
the likelihood. In addition, this method only uses data
from observations that are discordant on both response
and the covariates (e.g., time). As a result, it cannot be
used to estimate the effects of a time-invarying covari-
ate such as treatment condition. However, the model
can estimate the interaction effects between time and
treatment condition. For data with only two time-
points, the estimated odds ratio of time reduces to the
ratio of discordant pairs (31). Because conditional
likelihood is unaffected by the sampling scheme (i.e.,
retrospective vs. prospective sampling), it can be used
in studies of either case-control or cohort forms (32).
The random-effects approach, however, may be biased
under case-control sampling (32).

EXAMPLE: THE MIDWESTERN PREVENTION
PROJECT

The data of interest were collected in a longitudinal
smoking and drug abuse prevention trial, the Midwest-
ern Prevention Project. The design of this project and
the intervention methods have been described in detail
elsewhere (19, 33). Briefly, the project is a longitudi-
nal school- and community-based trial of prevention
of cigarette smoking and drug abuse in adolescents.
The data used in this illustration focus on a longitudi-
nal panel of youth from eight schools in the Kansas
City Standard Metropolitan Statistical Area who were
tracked individually from 1984 to 1992. Subjects were
sixth and seventh grade students who were evaluated
in a baseline measurement in Fall 1984 (n = 1,607).
The subsample included in this study was 1,002 indi-
viduals who were randomly selected to be followed up
to adulthood (502 in the treatment group and 500 in
the control group, with assignment by school). About
half of the sample were males and 82.2 percent
were whites; 40 percent were in grade 6 and 60 per-
cent were in grade 7 when the program started. Self-
administered questionnaires were used to assess stu-
dents' smoking behaviors and related factors. The
questionnaires were filled out by students in class-
rooms prior to intervention in Fall 1984, again at 6

months, and at one year. Subsequent assessment was
conducted annually until 1992. For self-administered
surveys, carbon monoxide measure of cigarette smok-
ing, using the MiniCO Indicator (Catalyst Research
Corporation, Owings Mills, Maryland), was used to
increase the accuracy of self-reported smoking data.

For the purpose of illustration, only one item of
several measurements of smoking behaviors is consid-
ered, that is, smoking in the month prior to the survey
(coded as 0 = no, 1 = yes; it is simply called "month-
ly smoking" in the remainder of the paper). This study
focuses on the data from the first seven timepoints of
measurements (from baseline to 5-year follow-up)
and, for simplicity, analyzes data only for those stu-
dents with complete data across all seven waves (n =
682). Also, for the sake of simplicity, we ignore the
intraclass correlations due to classrooms and schools
(see references 34 and 35).

Table 1 treats the seven waves of measurement as
repeated cross-sectional surveys and displays the prev-
alence of monthly smoking in the treatment and con-
trol groups. In general, the prevalence of smoking
increased across time for both groups. However, the
trend is not the same for the two groups. For the first
five timepoints, the rate of increase is greater for the
control group than for the treatment group. For the last
two timepoints, the prevalence leveled off in the con-
trol group but continued to rise in the treatment group.

Illustrative analyses using population-averaged
approaches

To illustrate the connections between GEE and
stratified analysis, we first analyze smoking data from
only two timepoints (baseline and one year). Table 2
shows the data laid out in contingency tables stratified
by time and treatment group. The Mantel-Haenszel
odds ratio for the effects of treatment group on smok-
ing is 0.96 (95 percent confidence interval (CI) 0.68-
1.36), indicating no significant differences in smoking
between the two groups after controlling for time. In
this calculation, we simply ignore the lack of indepen-
dence in subjects' responses at the two timepoints. The

TABLE 1. Percent prevalence of monthly smoking in the last
month across time by treatment group: the Midwestern
Prevention Project, 1984-1992

TimepoM Control group
(n=318)

Treatment groif)
(n = 364)

Baseline (T1)
6 months (T2)
1 year (T3)
2 years (T4)
3 years (T5)
4 years (T6)
5 years (T7)

5.7
6.9

15.7
25.5
31.1
33.0
34.9

9.6
10.2
11.0
15.1
20.3
30.2
35.4
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TABLE 2. Contingency tables for smoking data at baseline
and one year: the Midwestern Prevention Project, 1984-1992

No

Smoking

Yes

/. Smoking and treatment group stratified by time

Baseline
Control
Treatment
Total

OR* = 1.77
95% Cl* 0.99-3.18

One year
Control
Treatment
Total

OR = 0.66
95% Cl 0.42-1.03
ORMH* = 0.96
95% Cl 0.68-1.36

300
329
629

268
324
592

18
35
53

50
40
90

//. Smoking and time stratified by treatment group
Control group

Baseline
One year
Total

OR = 3.11
95% Cl 1.81-5.35

Treatment group
Baseline
One year
Total

OR= 1.16
95% Cl 0.72-1.87
ORMH = 1.80
95% Cl 1.27-2.56

300
268
568

329
324
653

18
50
68

35
40
75

Total

318
364
682

318
364
682

318
318
636

364
364
728

• OR, odds ratio; Cl, confidence interval; ORHH, Mantel-Haenszel
odds ratio.

Mantel-Haenszel odds ratio comparing one year with
baseline smoking is 1.80 (95 percent Cl 1.27-2.58),
indicating a significant increase in smoking from base-
line to one year after controlling for treatment group.

The Breslow-Day test for interaction is significant (x2

= 6.95, degrees of freedom (df) = 1, p < 0.01),
suggesting that the time effects are not the same for the
treatment and control groups.

We estimated two logistic models (table 3), one with
only main effects of time and treatment group and the
other including a time by group interaction term so
that the results can be directly compared to those from
the stratified analyses described above. As expected,
results from the logistic models are nearly identical to
those from the stratified analyses. The interaction ef-
fect of treatment group and time is significantly less
than zero, suggesting that the increase in smoking is
greater in the control group than in the treatment
group. In the standard logistic regression analyses,
again, the time dependency is simply ignored; the
repeated observations from the same individual are
treated as independent observations.

Table 3 also lists results from GEE logistic models.
While the estimates from the GEE models are similar
to those from the standard logistic models, the stan-
dard errors are different. The standard error for the
treatment group is smaller in the standard logistic
model, whereas the standard errors for time and the
interaction are smaller in the GEE models. Thus, the
test statistics (Wald x2) for time and the interaction
term from the GEE models are noticeably larger than
those from the standard logistic models.

Illustrative analyses using subject-specific
approaches

As discussed above, the random-effects approach is
closely related to the matched-pair method in epide-
miology, such as the conditional likelihood approach.
To illustrate this point, we lay out the joint distribu-
tions of the responses for all subjects, by treatment and
group (table 4). This setup is analogous to a matched
study in which the repeated observations for each

TABLE 3. Standard logistic regression and GEE* logistic regression analyzing the effects of treatment
group and time on smoking (baseline and one-year data): the Midwestern Prevention Project, 1984-1992

p SE* Waldx2 Odds ratio 95% Cl*Models

I. Standard logistic modelst
Treatment group (0 = control, 1 = treatment)
Time (0 = baseline, 1 = one year)
Test for interaction

II. GEE logistic modelst,*,§
Treatment group (0 « control, 1 = treatment)
Time (0 - baseline, 1 » one year)
Test for interaction

-0.04
0.59

-0.99

-0.09
0.59

-0.99

0.18
0.18
0.38

0.20
0.15
0.31

0.06
10.5
6.83

0.20
15.5
10.2

0.96
1.80

0.91
1.80

0.68-1.36
1.26-2.58

0.61-1.36
1.34-2.43

* GEE, generalized estimating equations; SE, standard error; Cl, confidence interval.
t The effects of treatment group and time are estimated from the main effects model.
t Exchangeable, independent, and unspecified "working" correlations give near-identical estimates and SEs.
§ SEs for GEE models are robust SEs.
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TABLE 4. Matched pair contingency tables for smoking data
at baseline and one year: the Midwestern Prevention Project,
1984-1992

Smoking
at baseline

Smoking at one year

No Yes Total

/. Joint distribution of smoking at baseline and one year

No
Yes
Total

McNemar test:

95% Cl 1.53-3.82

566
26

592

63
27
90

629
53

682

//. Smoking at baseline and one year stratified by treatment group

Control group
No
Yes
Total

ORUm. = 6 3 3

95% Cl 2.68-14.97
Treatment group

No
Yes
Total

°R* , .= 1-25
95% Cl 0.69-2.25

Test for treatment x time
interactions2 =10.21, df*=

262
6

268

304
20

324

A, p< 0.01

38
12
50

25
15
40

300
18

318

329
35

364

* 0 R ta»- matched odds ratio for time; Cl, confidence interval; df,
degrees of freedom.

subject at two timepoints can be thought of as a
matched pair. Because each "pair" is matched on treat-
ment group, the group effects cannot be examined
using the matched-pair method. However, because
time is always discordant for the two observations in
each subject, the effects of time and the interaction of
time and group can be examined using the matched-
pair method.

The matched odds ratio for time is 2.42 and its 95
percent confidence interval excludes one, suggesting a

significant increase in smoking from baseline to one
year. The interaction between time and group is tested
by using the "discordant pairs" for the control and
treatment groups in a single table and calculating the
Pearson chi-square (36). The test statistic is highly
significant (x2 = 10.21, df = \,p< 0.01), suggesting
that the effects of time are not the same for treatment
and control groups (OR^,, = 6.33 for the control
group and OR^,, = 1.25 for the treatment group).

Table 5 compares the results from the conditional
logistic models and random-intercept logistic models
by analyzing the data from baseline and one year. The
effects of time are identical between the two methods.
The random-effects logistic model is used to estimate
the effects of the treatment, controlling for time. The
estimated odds ratio for treatment group is 0.92 (95
percent Cl 0.50-2.01), which can be compared with
0.91 (95 percent Cl 0.61-1.36) from the GEE model.
With respect to the interaction of treatment group and
time, both the estimate (absolute value) and standard
error are greater in the conditional logistic model than
in the random-effect model. But the test statistics
(Wald x2) are relatively close to each other and to that
from the GEE logistic model.

Analyses with all seven timepoints

The standard logistic, GEE, and random-effects
models are now used to evaluate group differences
across all seven timepoints from the Midwestern Pre-
vention Project. In all models, the dependent variables
are the repeated measures of smoking from the
6-month to 5-year follow-ups (from T2 to T7). The
independent variables include a linear time effect
(from 1 to 6), a quadratic time effect (time2), treatment
group, and interactions between group and the time
effects. Sex, race, grade at baseline, and baseline
smoking are entered as controlling variables.

We estimated two models for each set of analyses,
one with only main effects of sex, race, grade, baseline

TABLE 5. Conditional logistic regression and random-effects logistic regression analyzing the effects
of treatment and time on smoking (baseline and one-year data)

Models P SE* Wald x2 Odds ratio 95% Cl*

I. Conditional logistic modelsf
Time (0 = baseline, 1 = one year)
Test for interaction treatment group x time

II. Random-intercept logistic modelf.t
Treatment group (0 = control, 1 = treatment)
Time (0 = baseline, 1 = one year)
Test for interaction

0.89
-1.62

-0.08
0.89

-1.53

0.23
0.53

0.31
0.24
0.49

14.4
9.30

0.06
13.7
9.55

2.42

0.92
2.42

1.53-3.82

0.50-2.01
1.52-3.87

* SE, standard error; Cl, confidence interval.
t The effects of treatment group and time are estimated from the main effects model.
X Random-effect standard deviations were estimated as oo = 2.25 (SE = 0.32) in the main effects model, and

o = 2.38 (SE - 0.35) in the model with interaction.
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smoking, time, and treatment group and the other that
added time2, time by group, and time2 by group.

Table 6 shows the estimates, standard errors, and
Wald x2 from all models. In all main-effects models,
the linear time effect is significantly larger than zero,
indicating an overall increasing trend of smoking
across time. The effect of treatment group is signifi-
cantly less than zero, indicating increased smoking in
the control group compared with the treatment group
after controlling for time and other covariates. In ad-
dition, the race effect is significant, indicating that
whites are more likely to smoke than nonwhites.
Those who smoked at baseline are more likely to
smoke at later timepoints.

In the models including interaction terms, the qua-
dratic time effects are significantly less than zero,
indicating that in the control group (i.e., group = 0),
the rate of increase in smoking has leveled off. The
group by linear effects of time are significantly smaller
than zero, suggesting that the increasing rate is greater
in the control group than in the treatment group. The
group by quadratic time effects, however, are signifi-
cantly larger than zero. Taken together, there is a
deceleration in the increasing trend of monthly smok-
ing in the control group (estimate of the quadratic
trend is —0.16 from the random-intercepts model) and
a slight acceleration in the treatment group (estimate
of the quadratic trend is -0.16 + 0.20 = 0.04 from
the random-intercepts model).

In general, the parameter estimates from the stan-
dard logistic model and the GEE model are relatively
close, whereas the Wald •£ from the random-effects
model and the GEE model are relatively close. As
expected, the standard errors for time-invariant covari-
ates such as sex, race, and treatment group are smaller
in the standard logistic models, while the standard

errors for time-varying covariates such as linear trend
and the interaction terms are generally smaller in the
GEE models. Both the estimates and standard errors
from the random-effects model are larger than those
from the GEE models, although the test statistics are
relatively close.

DISCUSSION

In this paper, we have illustrated how GEE models
relate to stratified analyses and standard logistic mod-
els and how random-effects models relate to the
matched-pair method in epidemiology. Understanding
these connections might be helpful in making a choice
of methods for correlated outcomes as well as in
interpreting estimated effects from different models.
The GEE approach models the marginal distributions
and treats the longitudinal data as though they were
cross-sectional. The interpretation of estimated regres-
sion coefficients and odds ratios is in line with the
Mantel-Haenszel method and the standard logistic
models. The dependence between repeated observa-
tions is taken into account by robust variance estima-
tion. When the number of subjects is large and missing
data are not an issue (i.e., no missing or MCAR,
discussed below), the estimated regression coefficients
from the standard logistic model should be very sim-
ilar to the estimates from the GEE method (37). How-
ever, the standard errors from the standard logistic
models are biased. The biases are dependent on
whether the covariates vary with time. Consistent with
the statistical literature (23, 24), our results show that
regression models ignoring the time dependency tend
to overestimate the standard errors of time-varying
covariates and underestimate the standard errors of
time-invariant covariates.

TABLE 6. Logistic models estimating intervention effects on the trends of smoking across all follow-up timepoints: the
Midwestern Prevention Project, 1984-1992

KfUVartcUO

Main effects model
Sex (0 = female. 1 = mate)
Race (0 = nonwhite, 1 = white)
Grade (0 = 6th. 1 = 7th)
BaseBne smoking (0 = no, 1 = yes)
Time (1-6)
Group (0 = control, 1 = treatment)

Interaction terms added
Time!
Group x«me
Group x time2

Standard logistic
model

Estimate SEt

0.15 0.08
1.13"* 0.14

-0.01
1.92"
0.37"

-0 .47"

- 0 . 1 1 "
-0 .93"
0.13"

0.10
• 0.13
• 0.03
• 0.10

• 0.02
• 0.26
* 0.03

Waldx2

3.37
67.6
0.01

216.68
213.92

22.96

20.27
1254
1457

Estimate

0.17
1.24'"
0.03
1.92***
0.37«"

-O.43«»

- 0 . 1 1 " *
-0.94***
0.13»»*

GEEt logistic
model

Robust
SE

0.13
024
0.16
022
0.02
0.16

0.02
022
0.03

Waldx2

1.79
26.51
0.04

76.51
216.85

7.42

30.14
1826
2156

Random-intercept
logistic model*

Estimate

024
1.72**'
0.01
3 .00" '
0 5 5 * "

- 0 . 6 7 ' "

-0 .16*"
-1 .40*"

020"*

SE

0.19
029
023
0.34
0.03
0.23

0.03
0.32
0.04

Waldx2

1.56
36.48
0

76.56
419.02

8.53

26.32
19.01
21.07

• p < 0.05; • • p < 0.01; • • • p < 0.001.
t GEE, generalized estimating equations; SE, standard error.
t Random-effect standard deviations were estimated as oo = 1.96 (SE = 0.12) in trie main effects model, and oo

interaction terms.
= 1.99 (SE = 0.13) In the model wth
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Although the random-effects approach naturally re-
lates to the conditional logistic model with respect to
the interpretation of the estimated regression coeffi-
cients, these two approaches are distinct in handling
the random-intercept. While the random-effects ap-
proach using maximum marginal likelihood estimation
explicitly models and estimates the random subject
effects (i.e., the degree of heterogeneity across sub-
jects in the probability of response, not attributable to
covariates in the model), the conditional likelihood
approach treats random subject effects as "nuisance"
and they are conditioned out of the likelihood func-
tion. In addition, the estimated covariate effects in the
more general random-effects logistic model are based
on both within-subject and between-subject compari-
sons, while the conditional likelihood approach is
based entirely on within-subject comparisons and thus
provides no information about covariates which do not
vary over time. Under a restricted condition (no miss-
ing data and no between-subject components), the
conditional likelihood approach is as efficient as the
random-effects approach (25). As such, the condi-
tional likelihood approach is appropriate for longitu-
dinal analyses if only within-subject effects are of
interest.

For the purposes of illustration, we only analyzed
subjects with complete data. In reality, missing data
are inevitable in longitudinal studies. In order for the
models to provide valid estimates in the presence of
missing data, certain assumptions have to be met (38).
The most stringent assumption is data missing com-
pletely at random (MCAR). Under this assumption,
the missingness does not depend on any individual
characteristics. In other words, missing subjects can be
considered as a simple random sample of all subjects.
However, MCAR can also be satisfied if missingness
is explained by model covariates, e.g., treatment con-
ditions, age, sex, and race. This special case of MCAR
is what Little (39) refers to as covariate-dependent
missing. The GEE model discussed in this paper re-
quires this assumption. The assumption for random-
effects models is less restrictive, namely, the missing
data are assumed to be missing at random (MAR),
which conditionally allows missingness to depend on
an individual's previously observed values of the de-
pendent variable. This assumption is more realistic in
practice.

The absolute values of the estimates from the
random-effects models are generally larger than those
from GEE models (9). The discrepancies in the estimates
between the two approaches are largely dependent on the
correlation between the repeated measures. However,
the "marginal" coefficients of fitted random-effects
models are very similar to those from a GEE model. In

fact, a subject-specific estimate can be converted to a
marginal or population-averaged coefficient through
the following equation (8):

/3PA - 0.346<x2J, (5)

where /3PA is a population-averaged coefficient, /3SS is
a subject-specific estimate, and cr2

v is the variance of
the random effect. This relation can be shown using
the estimates obtained from the random-effects and
GEE logistic models listed in table 6.

A relevant question is which approach is more ap-
propriate (i.e., GEE or random-effects). GEE models
are desirable when the research focus is on differen-
ces in population-averaged response, while random-
effects models are appropriate when the research focus
is on the change in individuals' responses (8, 25). In
our example, if the differences in the increasing trends
of smoking between treatment and control groups are
of interest, then random-effects models estimating the
changes in individuals' smoking behavior across time
are more appropriate. The random-effect approach can
be also useful in modeling co-twin control studies,
where the major interest is the within-pair compari-
sons across exposure discordant pairs (40). In this
situation, the random-intercept reflects the depen-
dency within each twin pair over and above the influ-
ence of other model terms. The heterogeneity in these
pair-varying intercepts may be due to unmeasured
shared genetic and environmental factors common to
the twins within a pair. On the other hand, the GEE
approach is more desirable when the objective is to
make inference about group differences. In the smok-
ing prevention example, if we want to estimate the
averaged treatment effect, regardless of individual
change over time, then the population-averaged pa-
rameter is of more interest. An advantage of the GEE
approach is that it can provide robust variance estima-
tion, whereas the random-effects may be sensitive to
different assumptions about the variance and covari-
ance correlation structure, which are usually difficult
to validate (8).

In epidemiology, longitudinal studies have been
used in many situations, such as clinical and preven-
tion trials, prospective studies of exposure-disease re-
lations, and repeated health services utilization sur-
veys. In these situations, different types of measures
over time may emerge, such as repeated measures of
continuous variables (e.g., weight in pounds (kg),
blood pressure in mmHg), repeated measures of binary
variables (e.g., obesity, hospitalization), repeated mea-
sures of ordinal variables (e.g., frequency or severity
of a symptom), and other measures that are irrevers-
ible over time (e.g., death). Software for the analysis
of repeated measures of continuous variables is now
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widely available, such as Proc Mixed in SAS and
BMDP5V. Survival analyses are widely used to ana-
lyze the timing of "absorbing" events such as death or
onset of a disease in cohort studies.

The methods discussed in this paper are suitable for
the analyses of repeated measures of binary variables
in epidemiology. In many rich data bases of longitu-
dinal studies in epidemiology, such as the Framing-
ham Study (41) or the Nurses' Health Study (42),
repeated measures of discrete outcomes are common.
Traditional analyses of these longitudinal studies have
often been restricted to data obtained from baseline
and one other timepoint. The statistical models dis-
cussed in this paper, while more complex than the
traditional approaches, use all available data and can
produce more efficient estimates (2, 43).
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APPENDIX

The GEE logistic models in this paper were fit using a
SAS macro written by Karim and Zeger (44). The solution
to the GEE involves an iterative solution that alternates
between quasi-likelihood methods (using iteratively re-
weighed least-squares) for estimating parameter estimates
and a robust method for estimating correlation as a function
of the parameter estimates. Davis (45) has also published a

FORTRAN 77 program to fit the GEE models. Besides
fitting logistic models, both the Karim and Zeger program
and the Davis program can be used to fit linear models for
continuous outcomes and Poisson models for count data.
The specification of the link and variance functions is the
same as in fitting the generalized linear models (GLM) by
GENMOD procedure in SAS 6.08 (46). The GENMOD
procedure in SAS 6.12 can now fit GEE models.

The random-intercept logistic model in this paper was
fitted by a FORTRAN program called MIXOR written by
Hedeker and Gibbons (47). MIXOR can allow for multiple
random-effects (e.g., random intercept and random slope)
and includes both logistic and probit response functions.
Because the likelihood does not exist in a closed form for
the general random-effect model, Gauss-Hermite quadra-
ture method is used to perform the integration numerically
by summing over a specified number of quadrature points.
Usually, the more points used, the more accurate the ap-
proximation, but the more time it takes. In the present paper,
we used 20 quadrature points for model estimation. In
addition, MIXOR can be used to fit random-effects models
for ordinal response data (30).

The random-intercepts model described in this paper can
also be fit by EGRET (48). The random-intercept model is
referred to as the logistic-normal model by EGRET. As with
MIXOR, Gauss-Hermite quadrature is used to integrate
over the random-effects distribution.

Besides the logistic-normal model, EGRET can also fit
beta-binomial logistic models and logistic-binomial models.
When using the same number of quadrature points (20
points), MIXOR and EGRET produce almost identical re-
sults for the data described above. The conditional logistic
models in this paper were estimated using the SAS PHREG
procedure (49). EGRET can also fit conditional logistic
models.
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