
Practice of Epidemiology

Design and Analysis of Metabolomics Studies in Epidemiologic Research:

A Primer on -Omic Technologies

Ioanna Tzoulaki, Timothy M. D. Ebbels, Ana Valdes, Paul Elliott, and John P. A. Ioannidis*

* Correspondence to Dr. John P. A. Ioannidis, Stanford Prevention Research Center, Stanford University School of Medicine, 1265 Welch Rd,

Medical School Office Building Room X306, Stanford, CA 94305 (e-mail: jioannid@stanford.edu).

Initially submitted January 31, 2014; accepted for publication May 7, 2014.

Metabolomics is the field of “-omics” research concerned with the comprehensive characterization of the small

low-molecular-weight metabolites in biological samples. In epidemiology, it represents an emerging technology and

an unprecedented opportunity to measure environmental and other exposures with improved precision and far less

measurement error than with standard epidemiologic methods. Advances in the application of metabolomics in

large-scale epidemiologic research are now being realized through a combination of improved sample preparation

and handling, automated laboratory and processing methods, and reduction in costs. The number of epidemiologic

studies that usemetabolic profiling is still limited, but it is fast gaining popularity in this area. In the present article, we

present a roadmap for metabolomic analyses in epidemiologic studies and discuss the various challenges these

data pose to large-scale studies. We discuss the steps of data preprocessing, univariate and multivariate data anal-

ysis, correction for multiplicity of comparisons with correlated data, and finally the steps of cross-validation and ex-

ternal validation. As data from metabolomic studies accumulate in epidemiology, there is a need for large-scale

replication and synthesis of findings, increased availability of raw data, and a focus on good study design, all of

which will highlight the potential clinical impact of metabolomics in this field.

metabolic profiling; metabolome-wide association studies; metabolomics

Abbreviations: MS, mass spectrometry; NMR, nuclear magnetic resonance; PLS, partial least squares regression.

Metabolomics is the field of “-omics” research, tightly
linked to genomics and proteomics, that is concerned with
the comprehensive characterization of the small low-
molecular-weight metabolites in biological samples (urine,
blood, saliva, tissues). Metabolites (e.g., peptides, oligonu-
cleotides, sugars, organic acids, ketones, aldehydes, amines,
amino acids, lipids, steroids, and alkaloids) are produced in
the body as the result of chemical processes and also come
from exogenous sources (e.g., diet, drugs, xenobiotics, or
gut microbe-host co-metabolism). Therefore, metabolomics
may provide a comprehensive assessment of gene actions,
intrinsic metabolism, and environmental exposures ranging
from dietary, gut microbial, and xenobiotic sources and
their interplay (1–3).

Analogous to the genome or proteome, the metabolome re-
fers to the complete complement of metabolites found in or
produced by an organism. There are approximately 500 dif-
ferent histological cell types in the human body, and each one

has its own gene expression, proteome, and metabolome.
Therefore, humans have more than 500 dynamic cellular
metabolomes (4). Currently, analyses of metabolites can
detect several hundreds or thousands of small molecules, de-
pending on the analytical platform, but no single technology
can measure the complete metabolome. Nonetheless, the
total number of human metabolites identified is relatively
modest (the Human Metabolome Database (5) currently
has 41,511 metabolite entries) compared with transcriptomics
(≈85,000) and proteomics (>10,000,000), where more tar-
gets can be identified and quantified (6).

The metabolome may provide a high-resolution, multi-
factorial phenotypic signature of complex diseases. This
profiling can provide important insights into the molecular
pathways underlying complex biological processes, measure
response and adherence to therapy, monitor disease progres-
sion, provide real-time information in surgical procedures
and disease diagnostics, and provide a window on gut health
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and the metabolic consequences of infections, among many
other possible applications (4). Until recently, the field of
metabolomics was not well suited for large-scale epidemio-
logic data, reflecting the limited capacity of the analytical
platforms and the processing requirements of the enormous
amount of data generated. Advances in the application of
metabolomics in large-scale epidemiologic research are now
being realized through a combination of improved sample
preparation and handling, robotic sample delivery systems,
automated data processing, improved quality control, and in-
novative use of multivariate statistical and chemometrics
tools (1, 4, 7). The associated costs of metabolomic analysis
is decreasing, but it is still prohibitive for large-scale epide-
miologic data analyses (untargeted metabolomics epidemio-
logic studies to date have evaluated <6,000 individuals).
Here, we review the state of the art of metabolomic profiling
in epidemiologic studies along with several of challenges that
the field is currently facing.

ANALYTICAL METHODS

Metabolic profiling is often performed using either nuclear
magnetic resonance (NMR) spectroscopy or mass spectrom-
etry (MS). These methods separate individual signals or an-
alytes by their resonance frequencies in a magnetic field or by
their mass-to-charge ratio, resulting in a spectral profile of
separation (6, 8). Both NMR and MS can identify and quan-
tify awide range of small molecules with good analytical pre-
cision, and both require a small amount of sample (10–400
μL). Their relative advantages and disadvantages have been
discussed previously (1, 4). In summary, NMR is highly re-
producible, requires little sample preparation, is nondestruc-
tive (no interference with sample), and is good for structure
elucidation. On the other hand, NMR has low sensitivity, as it
is orders of magnitude less sensitive thanMS.MSmeanwhile
is less reproducible and more platform-dependent, destruc-
tive to the sample, and time consuming, and the data gener-
ated are more complex for data analysis than with NMR (8).
NMR and MS metabolic profiling can run in either

targeted or untargeted mode. Targeted profiling separates a
limited number of specific metabolites of known identity
and is a more hypothesis-driven approach. Untargeted profil-
ing involves the use of multiple analytical assays (NMR,MS)
to measure as many metabolites as possible in a biological
sample. In the latter approach, the chemical identity of the
peaks may not be known a priori and chemical/spectral anal-
ysis must performed post hoc to identify the molecular spe-
cies. Once the profiling spectra have been obtained and the
metabolites identified, pathway and network analyses can
provide important information on underlying biochemical
pathways and connectivities, thus enriching the biological
context and clinical relevance. Untargeted analysis does not
require an a priori hypothesis and can be used to discover
novel metabolic associations and disease pathways. How-
ever, data density is high, and because analysis is not opti-
mized for specific metabolites, metabolite identification and
quantification may be difficult. Conversely, targeted mode is
based on an a priori hypothesis and can be optimized to quan-
tify metabolites of interest. Semi-targeted analysis is often
used to describe measurement of a metabolite class (e.g.,

bile acids). This approach allows quantification of metabo-
lites of interest and has the scope to discover new closely re-
lated metabolites associated with a disease phenotype. In an
epidemiologic setting, the selection of the analysis mode
should be driven by the hypothesis of the study; for example,
when there are no candidate metabolites to be examined, an
untargeted mode should be preferred in order to discover
novel associations between biomarkers and disease pheno-
types. A combination of sequential untargeted and targeted
analysis may enhance metabolite selection and identification
in epidemiologic studies. Initially, a range of features can be
selected from the untargeted analysis and identified through
assay-specific databases. Subsequently, those can be vali-
dated with targeted triple-quadrupole MS using an authentic
stable isotope–labelled standard, which gives absolute quan-
titation of the metabolite level. This approach involves vali-
dation of the metabolite chemical identification but also a
quantification to perform dose-response analysis.
Metabolomics can be performed on a wide variety of bio-

logical samples commonly collected in epidemiologic stud-
ies. Appropriate collection, handling, and storage of the
samples is critical to metabolomics analyses, as the methods
are sensitive to small changes in the metabolite profile that
may be introduced through poor sample handling procedures
(9–12). This is particularly important in relation to epidemi-
ologic studies because samples regularly go under freeze-
thaw cycles that may unpredictably affect the analytical
results. Sample preservation and avoiding contamination are
also crucial, especially as different studies have followed dif-
ferent sample handling protocols and used different preserva-
tives and conditions to store samples (Table 1). Blood is the
most commonly collected and stored biological fluid in epi-
demiologic studies and has been the most often used sample
in metabolomic analyses to date. As blood components are
under tight homeostatic regulation, the extent of variation
in blood metabolite concentration is limited. Urine samples
represent a good alternative to blood and have greater capture
of exogenous compounds such as microbiota, drugs, and diet,
and urine composition can vary a lot, especially in disease
states (1). A 24-hour collection is preferred over spot urine
collection because it provides the complete picture of cumula-
tive metabolite excretion over the 24-hour period. However,
24-hour samples are rarely available for epidemiologic stud-
ies. Urine is easier to deal in term of analytical chemistry than
is blood, as blood needs more sample preparation and is more
prone to experimental error. Other specimens, such as saliva,
are gaining popularity but still have not been used in large-
scale epidemiologic studies for metabolomics analyses, and
their analytical properties have been less studied (13, 14).
A number of commercial companies (e.g., Metabolon,

Biocrates, Chenomx, Metabometrix), in addition to well-
established research laboratories (e.g., the MRC-NIHR Phe-
nome Centre at Imperial College London, United Kingdom,
and The Broad Institute in the United States) are offering
metabolomics analyses for large-scale epidemiologic studies.
In contrast to genomics, where the measurement and inter-
pretation are standardized across different companies, in
metabolomics each company uses different approaches in
relation to assays, quality control, data preprocessing, and
metabolite quantification and identification, which leads to
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results that are difficult to harmonize and pool between dif-
ferent studies. Biocrates (Innsbruck, Austria) and Metabolon
(Durham, North Carolina) apply tandem MS, Chenomx
(Alberta, Canada) specializes in NMR, and Metabometrix
includes both analyses. Metabometrix and Metabolon take
an untargeted approach, whereas Biocrates applies targeted
metabolomics. Suhre et al. (15) examined the number of me-
tabolites common to Metabolon, Biocrates, and Chenomx;
482 distinct values of metabolite concentrations were avail-
able for analysis, but only 50 metabolites were quantified
on more than 1 platform.

MAIN STEPS IN STATISTICAL ANALYSIS FOR

EPIDEMIOLOGIC STUDIES

Metabolomic data have unique characteristics that pose
special challenges in epidemiologic data analysis, including
high dimensionality, use of multiple analytical methods
(NMR, liquid chromatography MS, etc.), high degree of col-
linearity, some degree of missing data, nonlinearity, and non-
normality. In addition, the number and the identity of most

metabolites are unknown in untargeted mode, which is in
contrast to other omic technologies, such as gene expression
or sequence data. This also makes the power calculations dif-
ficult because the number of features in unknown and the
number of test that will be performed cannot be estimated.
Comprehensive reviews exist on statistical methods for
metabolomics (16–22). In the present article, wewill summa-
rize the main steps in the process and the main statistical chal-
lenges involved in each step. Figure 1 gives an overview of
the steps taken to analyze metabolomics data.

The first step is preprocessing, which is challenging and
critical to final results and does not often receive adequate at-
tention in epidemiologic studies (Table 1). In MS, prepro-
cessing includes steps for peak detection, peak matching,
retention time alignment, peak integration, and peak filling.
Quality control analysis is also undertaken at this stage, usu-
ally by use of repeatability filters (e.g., filtering out all fea-
tures with coefficient of variation >30% in quality control
samples), and procedures should be clearly reported in epide-
miologic analyses. Drift correction also needs to be done to
correct feature-specific drift in measured intensities within a
batch. NMR preprocessing needs to account for peak overlap
and peak shift to aid peak interpretation (22, 23). Binning of
metabolite signals based on correlation structure is com-
monly used to account for peak shift but does not overcome
the problem of peak overlap (24). Peak fitting addresses both
peak shift and overlap but is time consuming and does not
take into account any unknown peaks, which results in infor-
mation loss. As an alternative or addition to binning, high-
resolution spectra can be used, although they are susceptible
to peak shift and overlap (25). They retain all of the data and
may be helpful for metabolite discovery and in interpretation
of the data. Alignment involves shifting peaks to match com-
mon features in different spectra, a difficult task that often
requires manual validation and can produce artifacts. Align-
ment is especially important when data from different cohorts
analyzed in different batches are going to be synthesized.
Normalization is common to NMR andMS and is used to ac-
count for uncontrolled metabolome-wide effects (e.g., dilu-
tion). Most instrument manufacturers provide their own
software that covers the basic preprocessing (e.g., Fourier
transformation in NMR or peak picking in MS), and some
also provide tools for further downstream preprocessing de-
scribed above. In NMR, examples of commercial software
are the TopSpin and Amix packages from Bruker Biospin
(Coventry, United Kingdom), manufacturers of NMR instru-
ments. There are also third party commercial and freeware ap-
plications such as iNMR (www.inmr.net), Chenomx (www.
chenomx.com), and ProMetab (26). In MS, commercial
examples include MassLynx and TransOmics from Waters
(Milford, Massachusetts) (manufacturers of MS instruments).
Freeware equivalents include XCMS (27), mzMine (28) and
mzMatch (29), which are all widely used. For both NMR and
MS, preprocessing is a crucial procedure that significantly
affects results and cannot be ignored. There is no standard
workflow, largely because instrument technology continu-
ally evolves, requiring new approaches to be developed. An
in-depth analysis of this is beyond the scope of this review;
we merely emphasis that care should be taken to understand
each step to ensure the validity of results. Identification of

Table 1. Challenges in Metabolomics Research Associated With

Different Stages of Research

Component Challenges

Study design Lack of detailed sample collection protocol
Sample contamination
Number of freeze-thaw cycles
Application of multiple analytical platforms
(nuclear magnetic resonance, liquid
chromatography mass spectrometry,
ultra-performance liquid
chromatography mass spectrometry) in
untargeted mode to increase the
coverage of detected metabolites

Power calculations when number of
features is unknown (untargeted
analysis)

Study reporting and
analysis

Reporting preprocessing methods
Reporting measures of quality control
Reporting method for outlier detection and
number of outliers detected

Reporting methods for handling missing
data

Data transformation
Estimation of metabolome-wide
significance level, taking into account
data dependence

Appropriate univariate and multivariate
analysis

Cross-validation of results (account for
over fitting)

External independent validation of results
Reporting method for metabolite
identification

Replication and
data synthesis

Relative rather than absolute
quantification of metabolites

Different methods for identification/
quantification of metabolites between
companies with a lack of information on
how metabolites are identified/
quantified

Inability to pool results between different
companies

Need for access to the full data, protocols,
and analysis codes for replication

Need for development of methods for
meta-analysis
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outliers and other sources of variation should also be exam-
ined and clearly described and reported. Explanatory, unsu-
pervised analysis is often used to allow a global overview of
the data and the identification of outliers and examination
of main sources of variation. Typical approaches include
principal components analyses, which can produce low di-
mensional summaries of these complex data sets in which ex-
treme outliers can be inspected visually or by statistical tests
(e.g., Hotelling T2) (30). Moderate outliers may not be shown
in principal components analyses score plots but can be
found in residual plots.
The next steps involve univariate and multivariate analyses

to uncover metabolic signals that are associated with the phe-
notype under study. Linear or generalized linear models can
be used for univariate analysis with adjustments for potential
confounders. Partial least squares (PLS) regression (31) and
its orthogonal filtered variants (referred to as O-PLS and
O2-PLS) (32, 33) are commonly used in metabolomic anal-
yses because of their ability to model highly collinear spectral
datawith appreciable amounts of both random and systematic
noise. PLS models maximize the covariance between scores
in X (predictor) and Y (outcome) spaces and in this way are
able to account for both systematic variation in the metabolic
profiles and correlations between the metabolic data and the
outcome. PLS is often used in “discriminant analysis” mode
to classify metabolic profiles according to a discrete set of
categories (e.g., disease cases and controls) (34). However,

the large sample sizes and presence of uncontrolled variation
in epidemiologic studies often lead to complex PLS models
that can be very hard to interpret. O-PLS and O2-PLS can
help here by separating the variation into 2 parts (34). The
first part, the “predictive” or “joint” variation, models varia-
tion that is common to both the X (predictor) and Y (outcome)
blocks. For example, this could be variation in the metabolic
profile that is linearly predictive of the disease class of an in-
dividual. The second part, the “orthogonal” or “unique” var-
iation, models influences that are not linearly related to Y (the
outcome). This captures any extraneous factors, whether
technical or biological, such as batch effects, sex, etc., that
are not related to the outcome. Separation of the model into
these 2 parts allows a more parsimonious explanation of the
data because only the predictive part needs to be interpreted
to understand the metabolic factors influencing the outcome.
Nonetheless, confounding factors may have a component that
is strongly collinear with the outcome, and this part will not
be removed by orthogonal PLSmethods. Themain difference
between O-PLS and O2-PLS is that in the latter, orthogonal
components can be incorporated in the model of the Y block
(outcome). In this way, O2-PLS is an ideal method for inte-
grating metabolomic data with other omic data, highlighting
parts that are highly related between the different assays.
PLS-based methods have found widespread application in
metabolomics. However, apart from PLS, other multivariate
and variable selection methods might have application in

Preprocessing
MS: Peak detection, retention time alignment, 
peak integration, quality control analysis, drift 

correction 

NMR: Full resolution, 
binning, peak fitting, 

alignment

NMR and MS: scaling 
and normalization

Exploratory analysis
Unsupervised exploratory visualization of data, usually through principal components analysis, to identify outliers 

and main sources of variation

Univariateanalysis
Univariate regression analysis using the full resolution spectra or binned data to determine which signals are 

associated with phenotype of interest  

Multivariate analysis
Multivariate statistical techniques with 
orthogonal partial least square methods

Other multivariable methods may include 
penalized regression approaches and Bayesian 

variable selection (still not widely used) 

Cross-
validation

Statistical threshold
Calculation of the level of statistical significance (to allow for multiple testing) through Bonferonni or false 

discovery rate or Metabolome Wide Significance Level

Quantification and 
identification

Metabolite 
quantification

Identify unknown metabolites through targeted MS assays for structural identification or 
through bioinformatics tools

Pathway analyses Pathway enrichment analysis Genetic determinants of metabolomics traits

External validation External, independent replication of findings

Figure 1. Flow chart of the steps in data analysis of metabolomic data for epidemiologic studies. MS, mass spectrometry; NMR, nuclear magnetic
resonance.
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metabolomics, including penalized regression and Bayesian
variable selection approaches (16, 35). Most multivariable
methods can be run through R packages in CRAN (R Foun-
dation for Statistical Computing, Vienna, Austria), whereas
SIMCA-P software (Umetrix, Malmö, Sweden) is commonly
used for participant component analyses and PLS-based ap-
proaches in metabolomics (36, 37).

Multivariate approaches suffer from over-fitting, and vali-
dation is an obligatory component of any analysis strategy
using these methods (Table 1). Typically, cross-validation
approaches are used in which a proportion of the data (e.g.,
10%, the “test set”) are removed, and the model is built with
the remaining “training set.” This procedure is repeated many
times until each sample has been in the test set exactly once.
The accuracy of the model on these left out samples gives an
estimate of the predictive power for unseen samples and also
the robustness of themodel to perturbations of the data (38, 39).
However, cross-validation methods do not guarantee good
performance across different populations and often overesti-
mate discriminatory performance between classes, probably
because biases are introduced in the process. Independent
external validation usually yields more conservative results,
but even external validation may also be inflated because of
optimism, selective reporting, and other biases (39, 40).

MULTIPLE TESTING CORRECTIONS

A key goal of statistical modeling in epidemiologic metab-
olomics studies is to interpret models in terms of metabolites
associated with the outcome of interest. In univariate models,
multiple testing corrections are essential. Bonferroni and
false discovery rates procedures are commonly used; how-
ever, these often produce overly conservative thresholds be-
cause of the very high degree of correlation present in the
metabolic data. Resampling methods such as the Metab-
olome Wide Significance Level (41) have been proposed to
estimate the P value distribution under the null hypothesis
and estimate corrections appropriate to the sample type and
assay method used. For example, in a study with 500 cases
and equal number of controls, assuming 7,100 spectral vari-
ables, the metabolome-wide significance level was estimated
at P = 2 × 10−5 (α = 5%), resulting in a 60% reduction in the
effective number of tests compared with Bonferonni correc-
tion (41). For multivariate PLS-based approaches, a number
of methods exist for selecting influential variables, including
the variable importance in projection, bootstrap, jackknife,
and permutation approaches, though no method currently
dominates the field in this area (16).

RESULTS SYNTHESIS AND REPLICATION

Systematic reviews, meta-analyses, and field synopses of
epidemiologic studies are currently lacking in the metab-
olomics field, in which replication efforts are still rare. The
reason why large replication efforts are still rare has to do
the nature of metabolomic data, which are not yet as standard-
ized and homogenized to follow the example of large-scale
genome-wide association study replication efforts in which
data from different studies were able to be combined success-
fully (42). Quantification of themetabolites is nonstandardized

between studies (relative rather than absolute quantification),
which prohibits the synthesis of the effect sizes between dif-
ferent studies. In theory, one could perform meta-analyses
that would combine P values or ranks if the peaks could be
aligned across studies, but this has not been successfully tried
to date and it would require careful pre-alignment. In addi-
tion, procedures from different commercial companies or re-
search laboratories follow different preprocessing strategies
and lack information about how the metabolites are identified
or quantified, which further introduces heterogeneity among
results. Finally, in untargeted metabolomics, it is difficult to
recognize the same features/signals among different studies
based on the chemical shift or the mass-to-charge ratio and
retention time, as those are dependent on analytical properties
and will vary between studies unless results have been align-
ed in the preprocessing stage. Meta-analyses methods for
metabolomics in epidemiologic research need to be devel-
oped. A database with results that focus on replication efforts,
summary effect sizes, and quality appraisal, as in field syn-
opsis for genomics, is not currently available. In the mean-
time, epidemiologic studies that aim to combine results or
be used for discovery and subsequent replication need to fol-
low the exact analytical procedures and the same preprocess-
ingmethods, including alignment between cohorts, to be able
to cross-examine results between studies before structural
identification of the metabolites.

WAYS TO IDENTIFY METABOLITES, SOLUTIONS TO

“UNKNOWNS,” AND PATHWAY ANALYSIS

The aforementioned statistical analysis will eventually
lead to the selection of a combination of features that are as-
sociated with the outcome of interest. When the analysis is
run in untargeted mode, the structural identification of the
metabolites that correspond to the selected peaks is essential.
Assignment of individual metabolites to those peaks can be
time consuming and challenging (Table 1), but online data-
bases of annotated metabolites are continuously growing,
thereby enabling faster and more reliable annotation. A num-
ber of catalogues of online databases are available that con-
tain information on metabolite chemical characteristics and
molecular data (Table 2).

Still, in any given epidemiologic study, the chemical iden-
tity of some detected metabolites will remain elusive; these
are often described as “unknown metabolites.” Many recent
metabolomic epidemiologic studies have reported a good
proportion of their high-ranking hits to be unknown metabo-
lites (e.g., 225 unknown compounds out of 517 measured
compounds with ultra-performance liquid chromatography-
MS in the Kooperative Gesundheitsforschung in der Region
Augsburg (KORA) Study; 75% unknown compounds in a di-
abetes case-control study), which hampers the interpretation
and application of results (43, 44). Beyond the wide array of
chemical analytic tools for identifying unknowns de novo,
various computational methods have been developed. These
include statistical correlation approaches, such as statistical
total correlation spectroscopy (45), computerized prediction
algorithms, and fragmentation trees, but these methods are
still not efficient enough for high-throughput data sets, espe-
cially when commercial companies have carried out the
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assays and the raw spectra are not available. Krumsiek et al.
(43) have also provided an alternative strategy that integrates
genome-wide association data, Gaussian graphical modeling,
and metabolomics to predict the identity of unknown signals.
The list of metabolites associated with the outcome of in-

terest can also be used to identify and interrogate the under-
lying biochemical pathways through automated analyses. For
example, the Metabolite Set Enrichment Analysis (MSEA)
follows the principles of gene enrichment analysis to help re-
searchers identify and interpret patterns of human metabolite
concentration changes (46). The Metscape database can be
used to visualize and interpret metabolomic data in the con-
text of human metabolic networks. The database allows users

to trace the connections between metabolites and genes, visu-
alize compound networks, and display compound structures,
but it is only useful when metabolites have been identified
(47). Other agnostic approaches, which deal with unknown
features, have been proposed but have not yet been tested
in epidemiologic settings (48).

CURRENT STATUS OF METABOLOMIC PROFILING IN

EPIDEMIOLOGY

Metabolomics was initially used as a term in the biomed-
ical literature in 1998, and since then, the term has been in-
creasingly used, with the number of publications rising

Table 2. Selection of Online Resources and Databases of Metabolites

Name Description Website

Human Metabolome
Database

A freely available electronic database containing detailed information
about small molecule metabolites found in the human body. The
database is designed to contain or link 3 kinds of data: 1) chemical
data, 2) clinical data, and 3) molecular biology/biochemistry data.
The database currently contains 41,511 metabolite entries,
including both water-soluble and lipid solublemetabolites, as well as
metabolites that would be regarded as either abundant (>1 μM) or
relatively rare (<1 nM).

www.hmdb.ca/

Human Metabolome Library A chemical resource with the power to help confirm, validate, or
quantify suspected metabolites in tissues or biofluids. Each of the
1,030 in-stock compounds were acquired through purchase, custom
synthesis, or purification. Researchers may obtain metabolites from
the Human Metabolome Library for basic research purposes.

www.hmdb.ca/hml

BiGG A metabolic reconstruction of human metabolism designed for
systems biology simulation and metabolic flux balance modeling. It
is a comprehensive literature-based genome-scale metabolic
reconstruction that accounts for the functions of 2,766 metabolites
and 3,311 metabolic and transport reactions.

http://bigg.ucsd.edu/

MetaboLights A database for metabolomic experiments and derived information. The
database is cross-species and cross-technique and covers
metabolite structures and their reference spectra, as well as their
biological roles, locations, concentrations, and experimental data
from metabolic experiments.

http://www.ebi.ac.uk/metabolights/
index

SetupX and BinBase The SetupX system enables entering biological metadata for steering
laboratory workflows by generating “classes” that reflect
experimental designs. After data acquisition, a relational database
system (BinBase) is used for automated metabolite annotation.

http://fiehnlab.ucdavis.edu/projects/
binbase_setupx

Biological Magnetic
Resonance Data Bank

A repository for data from nuclear magnetic resonance spectroscopy
on proteins, peptides, nucleic acids, and other biomolecules.

http://www.bmrb.wisc.edu/

METLIN: Metabolite and
Tandem MS Database

A metabolite database containing over 64,000 structures, with a data
management system to assist in a broad array of metabolite
research and metabolite identification by providing public access to
its repository of current and comprehensive mass spectrometry/
mass spectrometry metabolite data.

http://metlin.scripps.edu/index.php

KEGG: Kyoto Encyclopedia of
Genes and Genomes

A resource for understanding high-level functions and utilities of the
biological systems with large-scale molecular data sets generated
by different high-throughput experimental technologies.

http://www.genome.jp/kegg/

MassBank A repository of mass spectral data for chemical identification and
structure elucidation of chemical compounds detected by mass
spectrometry.

http://www.massbank.jp/index.
html?lang=en

Chemspider A chemical structure database providing text and structure search
access to over 29 million structures from hundreds of data sources.

http://www.chemspider.com/

Metabolomics Workbench An extensible informatics infrastructure which will serve as a US
national metabolomics resource. The specific objectives of this
infrastructure are to 1) develop a metabolomics data repository,
tools, and interfaces, 2) develop a cloud computing infrastructure for
metabolomics, 3) coordinate Regional Comprehensive
Metabolomics Resource Cores and other metabolomics initiatives,
and 4) provide the resources for advancingmetabolomics education
and research to enable new biomedicine.

http://www.
metabolomicsworkbench.org/
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rapidly after 2006 (Figure 2). Still, the field is relatively small
compared with other omics approaches (“genom*” retrieves
41,684 publications in 2013 alone). Cancer has received rel-
atively more attention than cardiovascular disease among
human studies of metabolomic profiling, but for both out-
comes, the papers restricted to humans are relatively rare
and do not exceed 1,200 as of November 2013, which is
when our search was performed (see Figure 2 for search
terms and source). Articles with primary data are only a
small fraction of this number. The number of epidemiologic
studies that use metabolic profiling is still limited and smaller
than that for other omic technologies, but its use is gaining
popularity quickly. In order to map the phenotypes already
examined in metabolomics studies in diverse epidemiologic
settings, we extracted the phenotypes described in the title of
the metabolomics studies with epidemiologic study designs
(n = 379) (Appendix Table 1). This crude analysis shows
that the range of phenotypes already explored is remarkable,
including (in addition to cardiovascular disease and cancer)
type 1 and 2 diabetes, autoimmune diseases, pregnancy-

related outcomes, respiratory disorders, diet and lifestyle
characteristics, mood disorders, and many others (Appendix
Table 1). Here, we provide a summary of the current status of
metabolomics profiling in type 2 diabetes as an example.
Type 2 diabetes is one of the most studied phenotypes within
the cardiovascular group and includes large studies with both
targeted and untargeted metabolomics measurements.

Metabolomics and type 2 diabetes

Metabolic profiling may offer information that can help in
early detection, disease prediction, guided treatment, and un-
derstanding of molecular pathways in type-2 diabetes. A
number of epidemiologic studies have already used targeted
metabolomic approaches to examined associations between
metabolomics and type 2 diabetes or related cardiometabolic
traits, such as insulin resistance and obesity. In the Framingham
Offspring Study, metabolic profiling was used to examine
predictors of type 2 diabetes onset among 189 individuals
who developed diabetes over 12 years of follow-up and
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Figure 2. Metabolomics in medical literature. A) Number of publications in PubMed until November 2013 with terms metabolomic* OR
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metabolome limited to humans and further limited to cardiovascular disease or cancer or diabetes or epidemiologic study designs (case-control
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189 matched controls. The study profiled 48 amino acids,
biogenic amines, and other polar plasma metabolites by liq-
uid chromatography-MS. Five branched-chain and aromatic
amino acids (isoleucine, leucine, valine, tyrosine, and phe-
nylalanine) had statistically significant associations with
future diabetes risk after Bonferonni correction, and the re-
sults were replicated in an independent, prospective cohort
study (49). Another study examined a metabolomics ap-
proach to identify candidate biomarkers of pre-diabetes using
a targeted liquid chromatography -MSmethod that quantified
188 metabolites. Three metabolites (glycine, lysophospha-
tidylcholine (18:2), and acetylcarnitine) had significantly al-
tered levels in persons with impaired glucose tolerance as
compared with those with normal glucose tolerance after
Bonferonni correction, and again the results were replicated
externally (50). Several other investigations on other epide-
miologic studies have also identified the branched-chain
and aromatic amino acids isoleucine, leucine, valine, tyro-
sine, and phenylalanine as being associated with the risk of
future diabetes (49, 51–55). Nonetheless, these results have
been based on so-called targeted approaches, which analyze
a panel of preselected metabolites and thus pose no problems
for biomarker identification. In addition, findings may under-
score the potential key role of amino acid metabolism early in
the pathogenesis of diabetes; however, such amino acids
could have been measured by conventional means, and the
added value of the metabolomics approach remains to be
shown. As in other fields, mechanistic studies and integration
of other omic data are still needed to suggest biological links
between these biomarkers to the onset of type 2 diabetes.
Studies have also developed risk models for type 2 diabetes
with integration of metabolomics data and other risk factors
(53). Despite the fact that these have shown high discrimina-
tion and very good calibration (area under the curve > 0.90),
the models still require external independent validation and
comparison with existing validated diabetes models (56–60).
Untargeted metabolomics approaches are still rare in epi-

demiologic research, but their application is increasing. In a
proof-of-concept metabolome-wide association study, we
demonstrated the potential of untargeted metabolic profiling
(using NMR) in 4,630 twenty-four–hour urinary samples for
the discovery of novel metabolites associated with blood
pressure of individuals. The strongest association was ob-
served for urinary formate excretion, which was inversely re-
lated to blood pressure of individuals (61). In relation to
diabetes, Suhre et al. used a cross-platform (MS by 3 different
commercial companies) approach in 40 diabetes cases and 60
controls and reported 32 associations after multiple testing
correction (false discovery rate <5%) between 423 metabo-
lites and type 2 diabetes (15). Menni et al. (62) used an un-
targeted metabolomic approach that identified a range of 447
fasting plasma metabolites when searching for novel molec-
ular markers that arise before and after hyperglycemia in
2,204 females from Twins UK. Overall, 42 metabolites
were found to significantly correlate with type 2 diabetes
after adjustment for multiple testing; of these, 17 had been
previously reported as associated with either type 2 diabetes
or insulin resistance. Among the metabolites identified,
3-methyl-2-oxovalerate was found to be the strongest predic-
tive biomarker for impaired fasting glucose after glucose

(odds ratio = 1.65, standard error, 0.14; P = 8.46 × 10−9)
and was replicated in an independent population (n = 720,
odds ratio = 1.68, 95% confidence interval: 1.34, 2.11; P =
6.52 × 10−6). Untargeted approaches showed a broad range
of metabolites, revealing previously unknown metabolites
and highlighting potential biomarkers for disease prediction
and a deeper understanding of causal mechanisms in type 2
diabetes. However, these approaches also pose challenges as
to metabolite selection and identification, and further studies
are needed to explore replication, synthesis, and impact of
current results (39).

CONCLUSIONS AND FUTURE PROSPECTS

Metabolomics represent an unprecedented opportunity in
epidemiologic research that offers measurement of environ-
mental and exogenous exposures with far less measurement
error than with standard epidemiologic questionnaires. How-
ever, the aforementioned description of the metabolomics
data handling highlighted numerous challenges. These
challenges, summarized in Table 1, operate in all stages of
research, from study design to analysis and reporting and fi-
nally to the replication of findings.
An issue of special concern is the synthesis and large-scale

replication of metabolomic data from different studies. Stud-
ies often use different analytical platforms (between studies
and within studies), and even within the same platforms com-
mercial companies use different methods to identify and
quantify metabolites, which make data harmonization diffi-
cult, though not impossible. Metabolomics in epidemiologic
research is still in its early days, but many large-scale studies
(n > 6,000) with untargeted metabolic profiling using multi-
ple platforms are now ongoing. At the same time, epidemio-
logic studies are becoming richer in other data, such as
proteomics and epigenetics. In order for metabolomic studies
to provide results that are valid and reproducible, there is need
for large coalition of teams and consortia with expertise in
different fields to provide interdisciplinary solutions to com-
plex data (63). At the same time, it is essential to make pub-
licly available raw data, protocols, and analysis codes for
these complex investigations to improve the transparency, re-
liability, and reproducibility of this research (7, 39, 40, 64).
Finally, the discovery and replication of metabolomic profiles
in relation to disease outcomes may need to be followed by
impact studies and randomized controlled trials to explore the
potential clinical impact of metabolomic signatures.
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Appendix Table 1. Phenotypes/Risk Factors as Described by the

Studies on Metabolomics and Epidemiologic Study Designsa

Phenotype/Risk Factor by Category

Cardiovascular disease

Heart failure

Diabetes, types 1 and 2

Acute coronary syndrome

Atherosclerosis

Lipids

Obesity

Insulin resistance

Stent restenosis

Atrial fibrillation

Cancer

Esophageal

Pancreatic

Colorectal

Breast

Endometrial

Prostate

Bladder

Thyroid

Gastric

Lung

Hepatocellular carcinoma

Malignant glioma

Acute myeloid leukemia

Respiratory illness

Chronic obstructive pulmonary disease

Asthma

Chronic kidney disease

Mood disorders

Schizophrenia

Major depressive disorder

Neurodegenerative diseases

Alzheimer’s disease

Parkinson’s disease

Table continues

Appendix Table 1. Continued

Phenotype/Risk Factor by Category

Diet and lifestyle factors

Smoking and smoking cessation

Response to vitamin supplements

Wine consumption

Physical activity level

Pregnancy-related factors and outcomes

Intrauterine growth restriction

Down Syndrome prediction

Gestational diabetes

Pre-eclampsia

Low birth weight

Preterm delivery

Autoimmune disorders

Systemic lupus erythematosus

Amyotrophic lateral sclerosis

Rheumatoid arthritis

Inflammatory bowel disease

Other

Pediatric septic shock

Primary dysmenorrhea

Autism spectrum disorders

Bariatric surgery

Tuberculosis

Aging

Polycystic ovary syndrome

Pancreatitis

Spinal muscular atrophy

Nephropathy

Nonalcoholic fatty liver disease

Cystic fibrosis

Periodontal disease

Human immunodeficiency virus infection

Sickle cell anemia

Osteosarcoma

a See Figure 1.
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