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We thank Vansteelandt and Keiding (1) for their commen-
tary on our article (2), in which we implemented G-compu-
tation, a maximum likelihood-based substitution estimator
of the G-formula. The goals of that article included 1) trans-
lating G-computation into the applied epidemiology litera-
ture by using a point-treatment example and marginal
parameter, 2) drawing connections between traditional re-
gression and G-computation, 3) demonstrating G-computa-
tion in a simple simulated data set, and 4) briefly presenting
related topics, such as super learning (3, 4). Their commen-
tary provides valuable background on G-computation that
was outside the scope of our article. Standardization was
addressed, albeit briefly, in our article, and we disagree that
our chosen presentation of G-computation was divorced
from the literature. We respond to their remaining commen-
tary via a road map for effect estimation (4), which can be
a useful component of epidemiologic analysis and can guide
investigators to address issues raised by Vansteelandt and
Keiding (1).

The road map for effect estimation we follow includes
definition of the research question, the estimator, and infer-
ence (not discussed here) (4). Defining the research question
involves describing the data, model, and target parameter.
Suppose the data are n i.i.d. observations of the random
variable O, where O has probability distribution P. A statis-
tical model is the set of possible probability distributions,
and the model is the statistical model augmented with pos-
sible additional causal assumptions. The target parameter is
a specific feature of P.

Vansteelandt and Keiding (1) discussed near violation of
the positivity assumption and the problem of extrapolation
when using G-computation. Near violations of the positivity
assumption should be addressed for all estimators. Positivity
is a testable statistical assumption, part of the statistical

model in the road map, and we refer readers to the article
by Petersen et al. (5) for information regarding diagnosis of
and response to violations of this assumption. Vansteelandt
and Keiding (1) also discussed marginal versus conditional
parameters. If a conditional parameter is most appropriate
for the research question, this fact will be translated into the
statistical question when defining the target parameter in the
road map.

The second step in the road map is the choice and imple-
mentation of an estimator. Vansteelandt and Keiding (1)
discuss inverse probability-of-treatment weighting estima-
tors (6, 7) and ‘‘doubly robust standardization’’ (8, 9). In-
verse probability-of-treatment weighting estimators are not
asymptotically efficient and can lead to problems in finite
samples (4, 10, 11). Doubly robust standardization is a sub-
stitution estimator that relies on weighting and a parametric
regression statistical model. Robins et al. (9) describe situ-
ations in which this estimator may not perform well.

The targeted maximum likelihood estimator (TMLE) (4,
12–14) is a doubly robust efficient loss-based substitution
estimator with appealing asymptotic and finite sample prop-
erties. One first obtains an estimator of the data-generating
distribution and then defines a parametric working sub-
model to fluctuate the initial estimator in a step targeted
toward making the optimal bias-variance trade-off for the
target parameter. Estimator comparisons involving TMLEs
have been presented elsewhere (4, 15–19).

The doubly robust estimator of Scharfstein et al. (20),
which is a special case of a TMLE (21), and the TMLE with
linear fluctuation function (12) were also examined in
the article by Robins et al. (9) that was referenced by
Vansteelandt and Keiding (1). For discussion of these esti-
mators, we refer to previous publications (18, 21). A valid
TMLE for continuous outcomes has been recently presented
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(18), and it demonstrates that the previously observed sen-
sitivity of these 2 estimators to the positivity assumption
was due to those specific implementations.

G-computation is an important estimator and building
block for other estimators. Our article (2) was designed to
illustrate implementation of G-computation for an epidemi-
ologic audience. We agree with Vansteelandt and Keiding
(1) that, before analysis, epidemiologists should consider
additional estimators based on their asymptotic and finite
sample properties.
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