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In this issue of the Journal, Snowden et al. (Am J Epidemiol. 2011;173(7):731–738) give a didactic explanation of
G-computation as an approach for estimating the causal effect of a point exposure. The authors of the present
commentary reinforce the idea that their use of G-computation is equivalent to a particular form of model-based
standardization, whereby reference is made to the observed study population, a technique that epidemiologists
have been applying for several decades. They comment on the use of standardized versus conditional effect
measures and on the relative predominance of the inverse probability-of-treatment weighting approach as opposed
to G-computation. They further propose a compromise approach, doubly robust standardization, that combines the
benefits of both of these causal inference techniques and is not more difficult to implement.

air pollution; asthma; regression analysis; simulation

Abbreviations: IPTW, inverse probability-of-treatment weighting; SE, standard error.

Standardization in statistics and epidemiology has a long
history, going back at least to the 18th century (1). Indirect
standardization amounts to applying covariate-specific dis-
ease risks for a standard (unexposed) population to the co-
variate distribution of the study (exposed) population and
forms the basic principle underlying the calculation of stan-
dardized mortality ratios. The standardized mortality ratio is
the ratio between the observed number of cases in the study
(exposed) population and the counterfactual number of
cases in the study population if it had in fact not been ex-
posed, so that the disease risks in the standard population
had applied. Thus, indirect standardization has as its target
population the exposed; if the standardized mortality ratio is
>1, then the exposure increased disease risk.

Direct standardization goes back to Neison (2) and in-
volves calculating the counterfactual number of cases there
would have been in the unexposed population if they had in
fact been exposed. By comparing this number with the ac-
tual number of cases in the unexposed population, one may
again see whether the exposure changes the disease risk, this
time with the unexposed as the target population.

Sato and Matsuyama (3) pointed out that the third obvi-
ous possibility, using the total population (exposed þ un-

exposed) as the target, corresponds to inverse weighting by
the probability of the observed exposure, given the covari-
ates. We emphasize that it also corresponds to the imple-
mentation of G-computation in the article by Snowden et al.
(4) that, for discrete covariates W and dichotomous (0/1)
exposure A and disease status Y, amounts to calculations
like

X

w

PðY ¼ 1jA ¼ a;W ¼ wÞPðW ¼ wÞ:

Here, P(W ¼ w) is estimated as the proportion of subjects
withW¼ w in the sample and P(Y¼ 1jA¼ a,W¼ w) as the
fitted value from a regression model (the Q-model). As such,
the use of G-computation in the article by Snowden et al. (4)
is equivalent to what is also known as model-based,
smoothed, or regression standardization (5) with the total
population as the target.

The above exposition of direct and indirect standardiza-
tion emphasizes their similarities. However, the following
alternative view paves the way for another important dis-
tinction in this area, that between conditional and marginal
effect measures. Under a multiplicative model for rates,
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kðtjA ¼ 1;WÞ ¼ hkðtjA ¼ 0;WÞ;

the standardized mortality ratio is the maximum likelihood
estimator of h (6). Clayton (7) suggested from this property
that indirect standardization may be viewed as a precursor
of confounder control by regression adjustment, for which
the effect parameter conditions on the confounders. In
contrast, direct standardization and standardization to
the total population are used to calculate marginal risks
across relevant populations that correspond to crude effect
measures from randomized trials. The latter can be seen
upon noting that the calculation in the first equation is
interpretable as the counterfactual risk of disease, P(Ya ¼
1), if all subjects in the relevant population were exposed
to A ¼ a, provided that—as we will assume from now
on—W is sufficient to control for confounding of the effect
of A on Y (8).

By applying G-computation, Snowden et al. (4) chose to
focus on marginal effect measures. Recall, however, that
conditional and marginal effect measures are not always
equally conceptually applicable, as Simpson (9; see also
reference 10) so entertainingly pointed out. Marginal expo-
sure effects, e.g.,

OddsðY1 ¼ 1Þ=OddsðY0¼ 1Þ;

are used to evaluate the exposure effect at the level of the
study population—as in a randomized trial—and may
henceforth be the epidemiologic parameter of interest for
making public health policy decisions. However, their in-
terpretation was tied to the particular population across
which the marginalization was done. Furthermore, when
the exposure is not relevant for a particular subset of the
population, it can result in effect measures with limited
scientific relevance (11). Conditional exposure effects, e.g.,

OddsðY1 ¼ 1j WÞ=OddsðY0 ¼ 1j WÞ;

are used to evaluate the exposure effect within subpopula-
tions of subjects who share the same covariate value W.
They are intended to be more transportable across popula-
tions but do require strict assumptions in the case that the
regression models are transportable, a ‘‘no unmeasured con-
founder’’ assumption across all past and future populations
to which the results are to be applied.

Current practice in epidemiology has for several decades
been dominated by the conditional approach, controlling
confounders by stratification, or regression. Conditional
and marginal effect measures can nevertheless be quite dif-
ferent, and investigators should carefully consider which to
report. The so-called noncollapsibility of certain nonlinear
effect measures like the odds ratio implies that conditional
effects may differ from marginal effects even in the absence
of confounding (12). On the one hand, this may make con-
ditional measures, unlike marginal effect measures, more
difficult to compare between studies, because different study
results are typically adjusted for different sets of covariates.
On the other hand, as previously mentioned, marginal efects
may be less transportable between populations. Sizable

differences between marginal and conditional effects may
also arise as a result of mistakes due to conditioning on
intermediate variables, for example, in settings with time-
dependent confounding (13, 14), or by inadvertently ignor-
ing covariate exposure interactions (11). In the latter case,
estimates of conditional effect measures would roughly
weight stratum-specific effects by their precision, whereas
marginal effect measures weight stratum-specific effects by
the observed covariate distribution in the study population
(as in the first equation).

G-COMPUTATION VERSUS INVERSE PROBABILITY-
OF-TREATMENT WEIGHTING: COMBINING THE BEST
OF BOTH WORLDS?

Historically, G-computation was introduced in a series
of revolutionary articles by Robins (13) as a generalization
of the first equation to enable adjustment for time-varying
confounders that may be intermediate on the causal pathway
from earlier exposures to later outcomes. It later formed
the theoretical basis of inverse probability-of-treatment
weighting (IPTW) in marginal structural models (15).
Both G-computation and marginal structural modeling
overcome the problem of adjusting for time-varying con-
founders by avoiding explicit regression adjustment through
standardization with the total population as the target. This
elucidates that both of these techniques can be used in
particular for the standardization of effect measures (3, 5),
even when the problem of time-varying confounding is not
present. Applications of this nature have nevertheless been
rather scarce (see references 3, 16, and 17 for exceptions).
The remark in the article by Snowden et al. (4) that G-
computation analyses are rare in epidemiology and that the
use of IPTW analyses is relatively predominant is thus am-
biguous. Although the remark is justified when contemplating
the literature on time-varying confounding, for the authors’
purpose of standardizing effect measures, IPTW analyses are
rare and G-computation is relatively predominant, although
commonly termed ‘‘standardization.’’

This division between the use of G-computation and
IPTWanalysis in these distinct application fields (standard-
ization vs. control for time-varying confounding) has a log-
ical basis. G-computation easily becomes computationally
complex as well as demanding in terms of parametric mod-
eling assumptions when time-varying exposures are con-
sidered. Further subtleties arise because the outcome
regression model or so-called Q-model may be difficult
or impossible to match with a marginal structural model
in the sense that parsimonious models for the stratum-spe-
cific risks, P(Y ¼ 1jA ¼ a, W ¼ w), need not translate into
parsimonious models for the standardized risks, P(Ya ¼ 1)
(18). Snowden et al. (4) circumvented these difficulties by
restricting their development to binary exposures (and thus
to saturated marginal structural models, which are some-
what redundant). In contrast, IPTW analyses for marginal
structural models avoid these subtleties by not relying on
the Q-model. This makes them more broadly applicable
and often the method of choice for the analysis of time-
varying exposures. For point exposures, G-computation
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and the IPTW approach are viable competitors of similar
simplicity. They are equivalent when the covariate W is
discrete so that modeling assumptions can be avoided (3),
but not otherwise. The IPTW approach is not commonly
used in practice because of the traditional reliance on out-
come-regression-based analyses, which tend to give more
precise estimates. Its main virtue comes when the con-
founder distribution is very different for the exposed and
unexposed subjects (i.e., when there is near violation of the
assumption of the experimental treatment assignment), for
then the predictions made by the G-computation approach
may be prone to extrapolate the association between out-
come and confounders from exposed to unexposed
subjects, and vice versa. The ensuing extrapolation uncer-
tainty is typically not reflected in confidence intervals for
model-based standardized effect measures based on tradi-
tional outcome regression models, and thus the IPTW
approach may give a more honest reflection of the overall
uncertainty (provided that the uncertainty resulting from
estimation of the weights is acknowledged) (19). A further
advantage of the IPTW approach is that it does not re-
quire modeling exposure effect modification by covariates
and may thus ensure a valid analysis, even when effect
modification is ignored.

In reconciliation of both approaches, we here propose a
compromise that combines the benefits of G-computation/
model-based standardization and of the IPTWapproach. Its
implementation is not more difficult than the implementa-
tion of these other approaches. As in the IPTW approach,
the first step involves fitting a model of the exposure on
relevant covariates; this would typically be a logistic re-
gression model. The fitted values from this model express
the probability of being exposed and are commonly called
‘‘propensity scores.’’ They are used to construct a weight
for each subject, which is 1 divided by the propensity score
if the subject is exposed and 1 divided by 1 minus the pro-
pensity score if the subject is unexposed. The second step
involves fitting a model, the Q-model, for the outcome on
the exposure and relevant covariates but using the afore-
mentioned weights in the fitting procedure (e.g., using
weighted least squares regression). Once estimated, the
implementation detailed in the article by Snowden et al.
(4) is followed; that is, counterfactual outcomes are pre-
dicted for each observation under each exposure regimen
by plugging a ¼ 1 and then subsequently a ¼ 0 into the
fitted regression model to obtain predicted counterfactual
outcomes. Finally, differences (or ratios) between the aver-
age predicted counterfactual outcomes corresponding to
different exposure regimens are calculated to arrive at a stan-
dardized mean difference (or ratio) (see reference 19 for
a similar implementation in the context of attributable
fractions).

We refer to this compromise approach as doubly robust
standardization. Here, the name doubly robust expresses
that doubly robust standardized effect measures have 2
ways to give the right answer: when either the Q-model
or the propensity score model is correctly specified, but
not necessarily both. By using a Q-model and at the same
time allowing for its misspecification, this approach
inherits the benefits of relying on traditional outcome re-

gression models (namely increased precision) but not its
limitations (namely the risk of extrapolation bias and the
possibility that the Q-model does not match well with the
marginal structural model). In a more general context,
doubly robust estimators have been criticized for their
tendency to amplify model misspecification bias affecting
both the Q-model and the propensity score model (21).
The doubly robust standardized effect measures proposed
here do not cause such bias amplification (19, 22). For the
data in the article by Snowden et al. (4), we find that the
IPTW approach yields a marginal treatment effect of
�0.33 (standard error (SE), 0.062); doubly robust stan-
dardization yields similar results: �0.33 (SE, 0.062),
�0.34 (SE, 0.062), �0.33 (SE, 0.062), and �0.34 (SE,
0.062), corresponding to regression models 1, 2, 3, and
4, respectively. The fact that the same results were
obtained regardless of some of the outcome regression
models being misspecified supports the doubly robust
nature of this approach.

SUMMARY

In conclusion, the article by Snowden et al. (4) clearly
lays out the simplicity of G-computation in the context of
point exposures. We hope that their presentation, which is
largely divorced from the literature on standardization, will
not obscure the equivalence of both techniques. The term
standardization is revealing and rather well-known to
epidemiologists and therefore, in our opinion, is the termi-
nology of choice. The term G-computation has so far
been mostly reserved to refer to standardization of the
effects of time-varying exposures; potentially the term
‘‘G-standardization’’ as nomenclature for ‘‘standardization
with respect to generalized exposure regimens’’ would have
been more enlightening. Despite the essential equivalence
of G-computation for point exposures and standardization
with the total population as the reference, we believe that
the developments from the causal inference literature add to
the literature on standardization. They give a precise mean-
ing to standardized effect measures in terms of counterfac-
tuals, provide insight into the delicate differences between
conditional and marginal epidemiologic effect measures,
and suggest novel standardization techniques that combine
precision with robustness against model misspecification
and extrapolation.
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