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Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analy-

ses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth out-

comes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution,

Genetics and Early Life Events comprises all births to women living in 4 counties in California’s San Joaquin

Valley during the years 2000–2006. The probability of low birth weight among full-term infants in the population

was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic

exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of

traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16,

2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads

(first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model

assumptions applied to the data, should result in relatively unbiased estimates. The current results support find-

ings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight

among full-term infants.

air pollution; confounding factors (epidemiology); infant, low birth weight; pregnancy

Abbreviations: CI, confidence interval; D/S/A, deletion/substitution/addition; LBW, low birth weight; SAGE, Study of Air Pollution,

Genetics and Early Life Events; SES, socioeconomic status; T-MLE, targeted maximum likelihood estimation.

Ambient air pollution is recognized as an important
health problem in the United States and around the world
(1). Motor vehicles are a major source of ambient air pollu-
tion in the United States. Although progress has been made
in reducing emissions from individual vehicles, the
numbers of vehicles and miles traveled in the United States
have grown substantially in the past 15 years (2). Expan-
sion of metropolitan areas (urban sprawl) has increased the
travel distances between residential and commercial sites,
and the automobile is the primary means of travel. This
growth and change in land use has increased the relative
contribution of traffic to the urban pollution mixture. Epi-
demiologic analyses suggest that prenatal exposure to
traffic-related air pollutants may be associated with a

variety of health effects, including adverse birth outcomes.
Traffic-related air pollution has been associated with intra-
uterine mortality (3), low birth weight (LBW) (4, 5),
preterm birth (6), small size for gestational age (7, 8), neo-
natal mortality (9), and postnatal mortality (10, 11).
However, there is insufficient evidence to conclude that the
relation between traffic exposure and birth outcomes is
causal (2). Three general issues may be partly responsible
for some of the inconsistency in the findings: 1) definition
of the birth outcome, 2) exposure assignment, and 3) statis-
tical methods.

Many studies have investigated multiple birth outcomes
without clear specification of a hypothesis related to a
single adverse birth outcome. LBW is classified as birth
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weight less than 2,500 g. In 2006, 8.3% of infants in the
United States were born LBW (12), as compared with
6.7% in 1984 (13). The highest prevalence of LBW is re-
ported for African Americans (11.9%) (12). Most LBW
infants are preterm (i.e., born before 37 weeks’ gestation).
“Term LBW” pertains to infants who weigh less than
2,500 g and are born at or after 37 weeks’ gestation, as de-
termined from the last menstrual period, and accounts for
approximately 2% of all births. These LBW births often
occur because of impaired fetal growth rather than prematu-
rity, thereby suggesting that the causal mechanisms are
different.
Previous studies on maternal smoking and LBW suggest

that air pollution exposure could potentially affect fetal
growth and provide a framework for a potential mechanism
of action (14, 15). Therefore, in this study, we evaluated
term LBW as a marker of fetal growth separate from the
influence of length of gestation. Restriction to full-term
infants, in this case, allowed for investigation of a more
specific research question.
In most epidemiologic analyses, estimated associations

from previous studies have been derived from traditional
parametric regression methods, which are unable to return
the most relevant parameter estimates for understanding the
public health impact and, more importantly, are based on
arbitrary modeling assumptions and thus may result in
biased estimates. We undertook the present study to
address 3 limitations of earlier studies with a specific hy-
pothesized birth outcome, high-quality exposure informa-
tion, and statistical methods that a priori estimate marginal
measures of association. This results in parameter estimates
with greater public health interpretation, while mitigating
the bias from model misspecification as much as possible.
This paper provides an illustration of how to use targeted
maximum likelihood estimation (T-MLE), and it does so
data-adaptively using flexible machine learning algorithms.

MATERIALS AND METHODS

Study population

The Study of Air Pollution, Genetics and Early Life
Events (SAGE) was designed to investigate the influence of
exposure to traffic-related air pollution on pregnancy and
birth outcomes. Birth certificates from all 2000–2006 births
to women living in the 4 most populated counties in the
San Joaquin Valley of California (Fresno, Kern, Stanislaus,
and San Joaquin) were obtained from the California De-
partment of Health Services (Sacramento, California).
This analysis was limited to full-term singleton births,

for numerous reasons. We defined LBW as birth weight
less than 2,500 g and term birth as birth at ≥37 weeks’ ges-
tation. There were a number of exclusions used to isolate
term LBW as the outcome and to exclude other adverse
birth outcomes. Infants with gestational lengths greater than
44 weeks were excluded because of concerns about data
quality regarding reports of the last menstrual period.
Infants with birth weights less than 500 g or more than
5,000 g were also excluded because of the likelihood of
complications such as birth defects or maternal diabetes, as

well as data quality issues related to the validity of the
weight measurement. Finally, mothers with pregnancy
complications such as hypertension, diabetes, or uterine
bleeding, as reported on the birth certificate, were excluded
based on the assumption that the potential impact of traffic
exposure would be far outweighed by the influence of these
maternal conditions (4).
The maternal residence locations were geocoded with

ArcGIS software (ESRI, Redlands, California). Addresses
were corrected with ZP4 software (Semaphore Corporation,
Aptos, California) in ArcView and SAS, version 9.2 (SAS
Institute Inc., Cary, North Carolina). The exposure metric
was an indicator of traffic density, calculated from the
distance-decayed annual average daily traffic volumes (16)
surrounding the geocoded maternal residences. Roadway
link-based traffic volumes were derived from Tele-Atlas/
Geographic Data Technology traffic-count data for 2005,
using methods similar to those of other health-effects
studies (16). Further details about exposure assessment are
presented in Web Appendix 1, which is available on the
Journal’s website (http://aje.oxfordjournals.org/). We split
the traffic density indicator into quartiles to characterize the
relation across the exposure distribution. For example, the
lowest quartile of traffic density represents locations sur-
rounded by small local roads, and the highest quartile is
characterized by locations near freeways.
The variables entered into this analysis include: maternal

age (<20, 20–35, or >35 years), maternal race (white, His-
panic, African-American, Asian, or other), maternal educa-
tion (no high school, some high school, some college, or
bachelor’s or other degree), parity (0 or ≥1), prenatal care
(initiation in the first, second, or third trimester), Medi-Cal
payment of birth expenses, infant sex, year of birth (2000–
2006), and maternal county of residence (Fresno, Kern,
Stanislaus, or San Joaquin). Data on these variables were
obtained from the birth certificates.
Low socioeconomic status (SES), such as poverty and

unemployment, has been associated with adverse birth out-
comes (17). Furthermore, SES has been identified as an
effect modifier in the relation between air pollution and
adverse birth outcomes (18–21). Based on measures imple-
mented in the study by Ponce et al. (21), we created an in-
dicator variable for low SES that was defined as
unemployment greater than 10%, more than 15% of house-
holds receiving public assistance, and more than 20% of
families living below the federal poverty line at the block-
group level in the 2000 US Census (21, 22). This variable
may not pertain directly to any individual but is meant to
provide contextual information about the neighborhoods in
which the SAGE study population lived. This research was
approved by the University of California, Berkeley, Office
for Protection of Human Subjects and the California State
Committee for the Protection of Human Subjects.

Statistical analysis

T-MLE provides a marginal (population-level) estimate
and a parameter of interest with a straightforward interpre-
tation (risk difference). It can also be applied to estimating
a parameter akin to a causal attributable risk (see literature
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on the population intervention models (17, 23)). The param-
eter of interest is defined as a data-generating distribution
on potential outcomes relative to potential interventions
(24); the potential outcomes have been referred to as coun-
terfactuals, and we refer the reader to the literature for a
more thorough discussion of counterfactuals (25). Briefly,
counterfactuals are the set of possible outcomes that would
be observed under each possible treatment if, contrary to
fact, each person could be observed after exposure to each
level of the treatment (i.e., traffic density).

Our goal was to estimate, at the population level, the pre-
dicted probability of term LBW had everyone been
exposed to each quartile of traffic density. Further details
on the statistical methods used are available in Web Appen-
dix 2. In short (under assumptions), the predicted probabili-
ty of term LBW can be written as

EYa ¼ EwfEðY jA ¼ a;WÞg;

where Ya is the counterfactual outcome had everyone re-
ceived the exposure A = a, Y is the outcome in the observed
data (LBW), A is (quartile of) traffic density exposure
during pregnancy, W is the vector of potential confounders,
and Ew is the expectation taken over all covariate patterns—
that is, the predicted probability of the outcome weighted by
the distribution of covariates. This equality is based on the
relevant identifiability assumptions (26).

T-MLE consists of 2 modeling steps. The first step is an
initial model of the regression Q0

nðA;WÞ; ÊðY jA;WÞ. The
second step is an augmentation of the initial fit to (heuristi-
cally) account for any residual confounding due to the
model selection inherent in the machine learning algorithm
used to estimate Qn

0, which can be achieved simply in this
case by adding a “special covariate.” This covariate is a
function of the estimated probability of receiving the expo-
sure of interest conditional on the covariates, or specifically

logit Q1
nðA;WÞ� � ¼ logit Q0

nðA;WÞ� �þ 1n
IðA ¼ aÞ
gnðajWÞ ;

where g(a|W) = P(A = a|W), Qn
0 (A,W) is the initial fit of the

regression, I(A = a) is the indicator function (1 if A = a, 0
otherwise), εn is an estimated coefficient, and the n sub-
script means “estimated from the data.” Thus, to obtain the
“optimal” model of the mean of the outcome given the ex-
posure of interest and confounders, one 1) obtains the
initial fit of the regression, 2) estimates g via an additional
regression, g(a|W) = P(A = a|W), and 3) using the initial fit
as an offset as shown, regresses the outcome against the
covariate, I(A = a)/gn(a|W), by means of logistic regression.
Because we wanted to avoid arbitrary modeling assump-
tions, both the Q model and the g model were fitted using
the deletion/substitution/addition (D/S/A) algorithm. The
D/S/A algorithm combines a flexible and aggressive data-
adaptive search with V-fold cross-validation (27) and poly-
nomial basis functions, as well as their tensor products.
Finally, we applied T-MLE to estimate a parameter akin to
attributable risk (17, 28) to measure the impact of a hypo-
thetical intervention that would change the exposure in the

population. In our case, there is no model for the parameter
because we are only interested in one comparison with the
population mean. This method can be generalized to other
situations where one would want to know the difference in
mean changes as the level of the intervention changes. Spe-
cifically, we estimated the difference in the mean outcome
in a population under 1 treatment-specific counterfactual
relative to the mean outcome actually observed in the popu-
lation:

c ; EY � EYa ¼assumptions
EY � EW EðY jA ¼ a;WÞf g:

This is simply estimated, given our final model for E(Y|A,
W), and using the empirical distribution to estimate the dis-
tribution of W as

cn ¼
1
n

Xn

i¼1

Yi � Q1
nða;WiÞ

� �
:

This method accounts not only for the strength of the asso-
ciation between the exposure and the outcome but also for
the distribution of the exposure and covariates which actu-
ally exist in the study population (E(Y)) and the nonpara-
metric estimation of the parameter of interest (Ew(Y|A = a,W))
(17). Given that the T-MLE estimate is derived to be as-
ymptotically linear with the efficient influence curve for a
parameter in a semiparametric model, we derive a robust
standard error by simply obtaining the sample variance of
the plug-in influence curve.

For comparison purposes, we performed a traditional lo-
gistic regression analysis with quartiles of exposure to
traffic density (with the first quartile as the reference cate-
gory) and included all of the same covariates.

Analyses were performed using R software, version
2.10.1 (DSA package, version 3.1.1; R Foundation for Stat-
istical Computing, Vienna, Austria) and SAS, version 9.2.
The R code can be found in Web Appendix 3.

RESULTS

Of the 329,362 births that took place in the San Joaquin
Valley during 2000–2006, the SAGE study population was
restricted to singleton births (8,387 multiple births were ex-
cluded). Additionally, birth records with missing data for
birth weight or gestational length, infants weighing less
than 500 g or more than 5,000 g, and infants with less than
20 weeks or more than 44 weeks of gestation were also ex-
cluded (gestational age: missing data or <20 weeks for
34,250 infants, >44 weeks for 382; birth weight: <500 g
for 289 infants, >5,000 g for 492). Records with missing
data on traffic density at the maternal residence were ex-
cluded (n = 12,826). Births with recorded maternal adverse
conditions during pregnancy, such as hypertension
(n = 461), diabetes (n = 4,639), or uterine bleeding
(n = 517), were excluded. We further restricted the study
population to gestational durations between 37 weeks and
44 weeks to capture full-term LBW rather than preterm
LBW (30,133 births with gestational ages of 20–36 weeks
were excluded). Further description of the excluded
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subjects and comparison with those included are presented
in Web Table 1. The final study population (n = 237,031) is
described in Table 1. The proportion of LBW infants was
higher in women who were under 20 years of age, were of
African-American or Asian race, were formerly nonparous
(i.e., this was their first birth), and had less education and
women whose birth costs were paid by Medi-Cal.
As Table 2 shows, mean traffic densities were higher in

Fresno and San Joaquin counties than in Kern and Stanis-
laus counties. The distribution of covariates across quartiles
of exposure to traffic density during pregnancy is shown in
Table 3. The variables that were selected by the D/S/A al-
gorithm in both the outcome (Q) and exposure (g) models
are listed in Table 4. Four of the variables were predictive
of both the exposure and the outcome: maternal age >35
years, African-American race, education, and trimester of

initiation of prenatal care. Additional variables came into
each of the models.
Table 5 shows the observed and adjusted results for the

association between traffic density and term LBW. The ad-
justed results are predicted probabilities of term LBW if,
contrary to fact, everyone had been exposed to each quar-
tile of traffic density. Women who lived in areas with
higher traffic density had higher proportions of term LBW
infants than women who lived in areas with less traffic,
after control for potential confounders derived from the
birth certificates and neighborhood SES. Specifically, if ev-
eryone in SAGE lived in an area surrounded by high traffic
density on busy roadways (fourth quartile of traffic density)
during pregnancy, there would be a 2.27% (95% confi-
dence interval (CI): 2.16, 2.38) probability of term LBW in
the population, as compared with the 2.02% (95% CI: 1.90,

Table 1. Characteristics of the Study Population (n = 237,031), Overall and by Birth Weight, Study of Air Pollution,

Genetics and Early Life Events, San Joaquin Valley of California, 2000–2006

Covariate

Total Study
Population
(n = 237,031)

Low Birth
Weight Infants
(n = 5,123; 2.2%)

Normal Birth
Weight Infants

(n = 231,908; 97.8%)

No. % No. % No. %

Maternal age, years

<20 32,270 13.6 968 18.9 31,302 13.5

20–35 179,819 75.9 3,561 69.5 176,258 76.0

>35 24,942 10.5 594 11.6 24,348 10.5

Maternal race/ethnicity

Asian 17,738 7.5 584 11.4 17,154 7.4

African-American 11,560 4.9 527 10.3 11,033 4.8

Hispanic 132,605 55.9 2,653 518 129,952 56.0

White 71,522 30.2 1,261 24.6 70,261 30.3

Other 3,606 1.5 98 1.9 3,508 1.5

Maternal education

No high school 28,027 11.8 539 10.5 27,488 11.9

Some high school 124,128 52.4 3,021 59.0 121,107 52.2

Some college 49,412 20.8 975 19.0 48,437 20.9

Bachelor’s or other degree 30,090 12.7 452 8.8 29,638 12.8

Missing data 5,374 2.3 136 2.7 5,238 2.3

Birth costs paid by Medi-Cal

Yes 127,564 53.8 3,110 60.7 124,454 53.7

No 109,467 46.2 2,013 39.3 107,454 46.3

Low socioeconomic statusa

Yes 41,745 17.6 1,102 21.5 40,643 17.5

No 195,286 82.4 4,021 78.5 191,265 82.5

Parity

0 83,819 35.4 2,303 45.0 81,516 35.1

≥1 153,212 64.6 2,820 55.0 150,392 64.9

Sex of infant

Male 120,456 50.8 2,221 43.4 118,235 51.0

Female 116,575 49.2 2,902 56.6 113,673 49.0

Table continues
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2.12) probability of term LBW had everyone lived on less
traveled roads (first quartile). The results showed that
the estimated probabilities of LBW were lower in the first
and third quartiles and higher in the second and fourth
quartiles. The highest quartile of traffic density exposure
was associated with significantly higher term LBW in com-
parison with the lowest quartile; however, the exposure-
response relation was not monotonic (Figure 1).

Based on these causal attributable risk estimates, if a
population intervention could reduce everyone’s traffic
density exposure during pregnancy to that of the first quar-
tile, the prevalence of LBW among full-term infants would
be 2.02% (95% CI: 1.90, 2.12) rather than 2.16%. The tra-

ditional model provided an odds ratio of 1.08 (95% CI:
1.00, 1.17) when comparing the highest quartile of traffic
density with the lowest, after controlling for all of the same
covariates. The results according to quartile are presented
in Table 6.

DISCUSSION

In this study, we identified a specific source of exposure
(traffic) and a specific outcome (term LBW) over a large
geographic area to examine a specific hypothesis. The
T-MLE analysis provided a (targeted) semiparametric esti-
mate of the causal association between traffic exposure

Table 1. Continued

Covariate

Total Study
Population
(n = 237,031)

Low Birth
Weight Infants
(n = 5,123; 2.2%)

Normal Birth
Weight Infants

(n = 231,908; 97.8%)

No. % No. % No. %

Initiation of prenatal care

First trimester 192,905 81.4 3,887 75.9 189,018 81.5

Second trimester 32,676 13.8 870 17.0 31,806 13.7

Third trimester 7,317 3.1 193 3.8 7,124 3.1

Unknown 4,133 1.7 173 3.4 3,960 1.7

Year of birth

2000 30,788 13.0 608 11.9 30,180 13.0

2001 31,707 13.4 675 13.2 31,032 13.4

2002 32,534 13.7 688 13.4 31,846 13.7

2003 33,082 14.0 717 14.0 32,365 14.0

2004 34,331 14.5 700 13.7 33,631 14.5

2005 35,567 15.0 816 15.9 34,751 15.0

2006 39,022 16.5 919 17.9 38,103 16.4

County of maternal residence

Fresno 77,093 32.5 1,757 34.3 75,336 32.5

Kern 56,318 23.8 1,253 24.5 55,065 23.7

San Joaquin 59,680 25.2 1,293 25.2 58,387 25.2

Stanislaus 43,940 18.5 820 16.0 43,120 18.6

a Low socioeconomic status was defined as unemployment greater than 10%, more than 15% of households

receiving public assistance, and more than 20% of families living below the federal poverty line at the block-group

level in the 2000 US Census.

Table 2. Traffic Density (Scaled to 2003) in the 4 Largest Counties in the San Joaquin Valley of California, Study

of Air Pollution, Genetics and Early Life Events, 2000–2006

County No. of Births
Proximity-weighted No. of Vehicles per Day

Mean (SD) Median Interquartile Rangea Maximumb

All 4 counties 237,031 10,369 (15,539) 4,874 225–13,548 163,810

Fresno 77,093 13,116 (17,607) 6,233 793–18,547 162,983

Kern 56,318 7,385 (11,107) 3,456 41–9,612 144,430

San Joaquin 59,680 11,698 (17,725) 5,937 3–14,921 157,340

Stanislaus 43,940 8,419 (11,787) 3,929 0–10,398 163,810

Abbreviation: SD, standard deviation.
a First quartile–third quartile.
b The minimum number of vehicles was 0; therefore, the maximum represents the full range.

Traffic Density and Term Low Birth Weight 819

Am J Epidemiol. 2012;176(9):815–824

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/176/9/815/88958 by guest on 10 April 2024



during pregnancy and term LBW. The results did not show
a clear exposure-response relation across the quartiles of
traffic density; however, there was a significant difference
in the predicted probability of LBW between the highest
and lowest quartiles of exposure, showing that higher traffic
density is associated with increased probability of LBW.
The difference between the T-MLE estimate and the crude
observed proportion of term LBW suggests that the analysis
adjusted for measured confounding and attenuated the risk
difference by a small amount (Table 5). The San Joaquin
Valley of California is among the most highly polluted
areas in the United States. Future analyses of individual
pollutants may provide more information on the relation
between background levels of air pollutants and traffic
density in the San Joaquin Valley.
Most of the previous studies on traffic-related air pollu-

tion and birth outcomes have examined the impact of indi-
vidual exposure to ambient pollutants, including nitrogen
dioxide, particulate matter, and carbon monoxide (15).
These investigators have reported associations between in-
dividual pollutants and various birth outcomes, but the
results have been inconsistent as to which pollutant and
which time period are the most critical. Some studies have
found associations between various adverse birth outcomes

and proximity to highways as a marker of exposure to
traffic (20, 29). In one recent study investigating the rela-
tion between traffic density and adverse birth outcomes in
Shizuoka, Japan, Kashima et al. (30) found no associations.
In an earlier study in Los Angeles County, California,
Wilhelm et al. (29) estimated higher odds of term LBW
(odds ratio = 1.11, 95% CI: 1.04, 1.18) for persons in the
highest quintile of distance-weighted traffic density as com-
pared with those in the lowest quintile, though the expo-
sure-response relation was not consistent. That study is the
most comparable to our SAGE study because of its large
sample size, its location in California, its use of census
block-group SES variables, and the similar methods used
for outcome ascertainment and exposure assignment. Some
notable differences include the years examined (earlier in
Los Angeles, when there was generally more traffic), the
location, and the statistical methods.
We restricted the study population to full-term births in

order to identify a specific etiologic occurrence; however,
term LBW is a rare outcome (approximately 2% of births).
Birth weight is an important predictor of infant survival
and morbidity (31). LBW is also an important indicator of
future health and may play a role in the development of
chronic diseases throughout life (32). Existing evidence

Table 3. Characteristics of the Study Population (n = 237,031) by Quartile of Traffic Density, Study of Air Pollution,

Genetics and Early Life Events, San Joaquin Valley of California, 2000–2006

Covariate

First Quartile
(n = 59,197)

Second Quartile
(n = 59,271)

Third Quartile
(n = 59,210)

Fourth Quartile
(n = 59,353)

No. % No. % No. % No. %

Birth weight

Low (<2,500 g) 1,149 1.9 1,322 2.2 1,232 2.1 1,420 2.4

Normal (≥2,500 g) 58,048 98.1 57,949 97.8 57,978 97.9 57,933 97.6

Maternal age, years

<20 6,878 11.6 7,845 13.2 8,287 14.0 9,260 15.6

20–35 45,014 76.1 44,706 75.5 45,015 76.0 45,084 76.0

>35 7,305 12.3 6,720 11.3 5,908 10.0 5,009 8.4

Maternal race/ethnicity

Asian 4,582 7.7 4,135 7.0 4,006 6.8 5,012 8.4

African-American 1,826 3.1 2,511 4.2 3,003 5.1 4,220 7.1

Hispanic 32,054 54.2 32,880 55.5 33,892 57.2 33,779 56.9

White 19,631 33.2 18,837 31.8 17,553 29.7 15,501 26.1

Other 1,104 1.9 908 1.5 756 1.3 841 1.4

Maternal education

No high school 6,915 11.7 6,743 11.4 7,360 12.4 7,009 11.8

Some high school 28,352 47.9 29,826 50.3 31,722 53.6 34,228 57.7

Some college 12,898 21.8 12,670 21.4 11,989 20.3 11,855 20.0

Bachelor’s or other degree 9,795 16.6 8,704 14.7 6,663 11.3 4,928 8.3

Missing data 1,237 2.1 1,328 2.2 1,476 2.5 1,333 2.2

Birth costs paid by Medi-Cal

Yes 27,547 46.5 30,053 50.7 33,024 55.8 36,940 62.2

No 31,650 53.5 29,218 49.3 26,186 44.2 22,413 37.8

Table continues
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links impaired prenatal growth with adult illnesses such as
non-insulin-dependent diabetes, hypertension, and coronary
heart disease (33–35). Gestation constitutes a period of
human development in which the fetus is particularly sus-
ceptible to toxins contained in air pollution because of the
high level of cell proliferation, organ development, and the
changing capabilities of fetal metabolism (36, 37). Air
pollution may affect maternal respiratory or cardiovascu-
lar health and, in turn, impair uteroplacental and umbili-
cal blood flow and transplacental glucose and oxygen
transport—all known to be major determinants of fetal
growth (36).

There were some potential limitations in this study.
There was measurement error in the exposure assignment
due to the uncertainties in traffic volumes and geocoded lo-
cations and the basic nature of the traffic density metric.
There may have been misclassification of exposure in

assigning traffic exposure at the maternal residence to an
individual. It is unknown how much time each woman
spent at the residence reported on the birth certificate
during pregnancy and how that time might have varied
during the course of pregnancy and vulnerable periods of
fetal development.

Because traffic count data were spatial yet not temporal
during the study period, it was not possible to target specif-
ic periods of pregnancy; rather, the measure used assumed
that the exposure was constant across the entire pregnancy.
Therefore, the model did not account for seasonal differ-
ences in traffic density or women’s activity throughout the
year, which may correspond to certain periods of fetal de-
velopment. For some locations, the density of traffic may
have varied by season, which was not accounted for in the
9-month assignments, and seasonal differences in chemical
and physical transformations of vehicle exhaust were not

Table 3. Continued

Covariate

First Quartile
(n = 59,197)

Second Quartile
(n = 59,271)

Third Quartile
(n = 59,210)

Fourth Quartile
(n = 59,353)

No. % No. % No. % No. %

Low socioeconomic statusa

Yes 5,654 9.6 9,065 15.3 11,084 19.8 15,942 26.9

No 53,543 90.5 50,206 84.7 48,126 81.3 43,411 73.1

Parity

0 20,468 34.6 20,910 35.3 20,809 35.1 21,632 36.4

≥1 38,729 65.4 38,361 64.7 38,401 64.9 37,721 63.6

Sex of infant

Male 30,129 50.9 29,948 50.5 30,059 50.8 30,320 51.1

Female 29,068 49.1 29,323 49.5 29,151 49.2 29,033 48.9

Initiation of prenatal care

First trimester 48,781 82.4 49,195 83.0 47,456 80.2 47,473 80.0

Second trimester 7,627 12.9 7,428 12.5 8,618 14.6 9,003 15.2

Third trimester 1,823 3.1 1,596 2.7 1,968 3.3 1,930 3.2

Unknown 966 1.6 1,052 1.8 1,168 2.0 947 1.6

Year of birth

2000 7,194 12.2 7,766 13.1 7,879 13.3 7,949 13.4

2001 7,470 12.6 7,862 13.3 8,127 13.7 8,248 13.9

2002 7,762 13.1 8,208 13.9 8,276 14.0 8,288 14.0

2003 8,183 13.8 8,260 13.9 8,380 14.2 8,259 14.0

2004 8,762 14.8 8,597 14.5 8,489 14.3 8,483 14.3

2005 9,339 15.8 8,951 15.1 8,560 14.5 8,717 14.7

2006 10,487 17.7 9,627 16.2 9,499 16.0 9,409 15.8

County of maternal residence

Fresno 13,910 23.5 21,155 35.7 16,303 27.5 25,725 43.3

Kern 15,698 26.5 16,488 27.8 14,574 24.6 9,558 16.1

San Joaquin 16,456 27.8 11,023 18.6 15,787 26.7 16,414 27.7

Stanislaus 13,133 22.2 10,605 17.9 12,546 21.2 7,656 12.9

a Low socioeconomic status was defined as unemployment greater than 10%, more than 15% of households

receiving public assistance, and more than 20% of families living below the federal poverty line at the block-group

level in the 2000 US Census.

Traffic Density and Term Low Birth Weight 821

Am J Epidemiol. 2012;176(9):815–824

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/176/9/815/88958 by guest on 10 April 2024



represented in the simple traffic density metric. Although
traffic density is an extrapolation of measured traffic activi-
ty, it may not represent fully the complex mixture of traffic-

related pollutants contributed by exhaust emissions, brake
wear, tire wear, and resuspended road dust.
We were limited to the information that was available on

the birth certificate for individual covariates. For example,
there was insufficient information on maternal smoking on
the birth certificate, which may have changed the results.
The prevalence of cigarette smoking among pregnant
women in California was 8.7% in 2003 (38), and the asso-
ciation of maternal smoking with birth weight has been
well documented (39). If smoking were associated with
living near heavily trafficked roadways, it is possible that
smoking could confound the relation between traffic-related
air pollution and term LBW. Additionally, the data on SES
may have been insufficient. We were limited to maternal
use of Medi-Cal payment for the birth and block-group-
level data from the 2000 census. The data from the birth
certificate files that were used in this study were subject to
measurement error, and missing information may have
biased our results. Although information on birth weight
has been found to be reliable in previous studies (92%–
100% in comparison with medical records (40)), informa-
tion on gestational age is less reliable because of variation
in maternal recall of the date of the last menstrual period
(40). Furthermore, gestational age has a greater proportion

Figure 1. Predicted probability (from targeted maximum likelihood
estimation) of term low birth weight (LBW) if all participants were
exposed to each quartile of traffic density during pregnancy
(n = 237,031), Study of Air Pollution, Genetics and Early Life Events,
San Joaquin Valley of California, 2000–2006. Bars, 95% confidence
interval.

Table 6. Odds Ratiosa for Low Birth Weight Among Term Births

(n = 237,031) by Quartile of Traffic Density, Study of Air Pollution,

Genetics and Early Life Events, San Joaquin Valley of California,

2000–2006

Quartile of Traffic Density Odds Ratio 95% Confidence Interval

1 1.00 Reference

2 1.10 1.02, 1.19

3 1.01 0.93, 1.09

4 1.08 1.00, 1.17

a Obtained using traditional logistic regression.

Table 4. Covariates Chosen by Means of the Deletion/

Substitution/Addition Algorithm for the Q0 Model (Outcome = Term

Low Birth Weight) and the g Model (Treatment = Quartile of Traffic

Density) of the Risk of Low Birth Weight According to Traffic

Density, Study of Air Pollution, Genetics and Early Life Events, San

Joaquin Valley of California, 2000–2006

Covariate
Outcome Model

(Q0)
Treatment Model

(g)

Maternal age, years

<20

>35 X X

Maternal race/ethnicity

Asian X

African-American X X

Hispanic X

White

Other

County of maternal
residence

Fresno X

Kern X

San Joaquin X

Stanislaus X

Maternal education X X

Birth costs paid by
Medi-Cal

X X

Low socioeconomic
statusa

X

Parity X

Sex of infant

Initiation of prenatal care X X

Year of birth X

a Low socioeconomic status was defined as unemployment

greater than 10%, more than 15% of households receiving public

assistance, and more than 20% of families living below the federal

poverty line at the block-group level in the 2000 US Census.

Table 5. Observed and Predicteda Percentages of Low Birth

Weight Among Term Births (n = 237,031) by Quartile of Traffic

Density, Study of Air Pollution, Genetics and Early Life Events, San

Joaquin Valley of California, 2000–2006

Quartile of
Traffic Density

Observed
%

T-MLE-
Estimated %

95% Confidence
Interval

1 1.94 2.02 1.90, 2.12

2 2.23 2.28 2.18, 2.40

3 2.09 2.07 1.96, 2.17

4 2.39 2.27 2.16, 2.38

Abbreviation: T-MLE, targeted maximum likelihood estimation.
a Obtained using T-MLE analysis.
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of missing information, and data may be falsely assumed to
be missing at random.

Despite these limitations, the SAGE study population is
a large sample with geographic diversity. Most studies of
traffic exposure during pregnancy and birth outcomes have
included only single metropolitan areas. Although this di-
versity increases variability and potential confounding,
with such a large sample size, this wide geographic area
provided us with an opportunity to estimate this relation
across a large population with a wider gradient of expo-
sures. Although the association was modest and the
outcome is rare, with such a ubiquitous exposure across an
entire population, the health impact may be important. Fur-
thermore, this study identified a specific hypothesis regard-
ing the detrimental impact of traffic-related air pollution on
fetal growth. If the hypothesis were correct, the implica-
tions would go beyond the 2% of infants with term LBW
and could apply to all fetuses.

Most previous studies have used only the zip code of the
mother’s residence and have assigned mothers to a moni-
toring station within a given distance of the home (4, 41,
42). Our exposure assignment may have been more precise,
because the street address was geocoded. Also, unlike most
previous studies, in addition to birth certificate characteris-
tics, the SAGE study included neighborhood SES obtained
from US census data (19–21).

In this study, we used recently developed semiparametric
methods to estimate a causal association. T-MLE provided
a marginal (population-level) estimate of the causal associ-
ation between traffic exposure and term LBW. T-MLE is
doubly robust against model misspecification—that is, the
estimator will produce unbiased estimates if either the treat-
ment or the outcome mechanism is modeled correctly.
Most importantly, T-MLE accounts for heterogeneity in the
individual exposure-response relation by targeting the pa-
rameter of interest and assumes no particular model for the
regression. As in any observational study, reliance on a
parametric model means that any estimate has to be inter-
preted in the context of a misspecified model, that is, with
some bias. This approach allows a highly adaptive machine
learning algorithm to fit the data (using cross-validation so
as to not overfit) and has a plug-in estimator with all of the
finite-sample benefits but still augments the model in a
manner optimally suited to estimation of the parameter of
interest (26).

As with all studies, we made an assumption that often-
times cannot be tested. For example, we assumed that there
was no unmeasured confounding. Our estimates assumed
that the correct models were selected, and to maximize the
probability that this assumption was valid, we used data-
adaptive algorithms for modeling to optimize fit and reduce
bias. We tested the experimental treatment assignment as-
sumption by plotting the distribution of the log odds of
being exposed to each quartile of traffic density across all
quartiles of exposure. The plots revealed that there were no
violations of the experimental treatment assignment as-
sumption (i.e., the probability of treatment was not 0 or 1
for any observation); therefore, exposure to specific quar-
tiles of traffic density was not deterministic based on the
treatment model. The plots demonstrating this test are

shown in Web Figure 1. The results from the traditional lo-
gistic regression analysis showed a similar pattern across
quartiles; however, the two analyses were estimating differ-
ent parameters and are not easily comparable.

In conclusion, the results from these analyses suggest that
increased prenatal exposure to traffic may be causally associ-
ated with increased risk of term LBW. This study used a
measure of a mixture of traffic-related air pollutants and esti-
mated a more causal parameter of interest at the population
level. In further studies, researchers should replicate this anal-
ysis in other populations, investigate the role of traffic-related
air pollution in other adverse birth outcomes such as preterm
birth, and gather data on additional covariates.
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