
Practice of Epidemiology

Revealing the Complexity of Health Determinants in Resource-poor Settings

Fraser I. Lewis* and Benjamin J. J. McCormick

* Correspondence to Dr. Fraser I. Lewis, Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 270, CH-8057

Zürich, Switzerland (e-mail: fraseriain.lewis@uzh.ch).

Initially submitted November 28, 2011; accepted for publication March 19, 2012.

An epidemiologic systems analysis of diarrhea in children in Pakistan is presented. Application of additive

Bayesian network modeling to 2005–2006 data from the Pakistan Social and Living Standards Measurement

Survey reveals the complexity of child diarrhea as a disease system. The key distinction between standard ana-

lytical approaches, such as multivariable regression, and Bayesian network analyses is that the latter attempt to

not only identify statistically associated variables but also, additionally and empirically, separate these into those

directly and indirectly dependent upon the outcome variable. Such discrimination is vastly more ambitious but

has the potential to reveal far more about key features of complex disease systems. Additive Bayesian network

analyses across 41 variables from the Pakistan Social and Living Standards Measurement Survey identified 182

direct dependencies but with only 3 variables: 1) access to a dry pit latrine (protective; odds ratio = 0.67); 2)

access to an atypical water source (protective; odds ratio = 0.49); and 3) no formal garbage collection (unprotec-

tive; odds ratio = 1.32), supported as directly dependent with the presence of diarrhea. All but 2 of the remaining

variables were also, in turn, directly or indirectly dependent upon these 3 key variables. These results are con-

trasted with the use of a standard approach (multivariable regression).

Bayesian network; diarrhea; epidemiologic determinants; graphical model; socioeconomic factors

Abbreviations: AIC, Akaike Information Criterion; DAG, directed acyclic graph; PSLSM, Pakistan Social and Living Standards

Measurement.

Presented here is an epidemiologic systems approach for
identifying potential determinants of diarrhea in children
under 5 years using data from the Pakistan Social and
Living Standards Measurement (PSLSM) Survey. Child-
hood diarrhea is the second biggest cause of worldwide
mortality in children under 5 years of age (1, 2), and health
surveys targeting this disease are common (3–6). Although
such study designs are not without issue, potentially suffer-
ing from data quality and reliability concerns (7), they are
widely used as low cost methods of data collection in de-
veloping countries.

A major challenge when analyzing data from surveys is
that they are typically exploratory in nature, where the
precise etiology of health outcomes is not known, and in-
formation on a large number of variables is often collected,
not all of which are necessarily complete or relevant. It is
also typical that many variables of potential interest are

interrelated, both to each other and also to health outcomes.
Such data may be conceptualized as describing an epidemi-
ologic system (8–11), that is, a collection of mutually inter-
dependent variables some or all of which can predict or
affect the health outcomes of interest.

Additive Bayesian networks are introduced as a method-
ology for identifying statistical dependencies in complex
disease systems by using observational data. Ultimately,
what is desired in many epidemiologic analyses is the iden-
tification of causal pathways (12–14), which can be ex-
tremely challenging in systems such as diarrheal disease
where many high level casual factors have been postulated
(15), and the identification of statistical dependencies can
be invaluable for informing such analyses.

The key distinction between standard multivariable re-
gression analyses and Bayesian network-type analyses is
that multivariable regressions seek to identify covariates
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associated with some outcome variable, for example, the
presence of diarrhea. Bayesian network analyses go much
further and attempt to not only identify associated variables
but also, additionally and crucially, empirically, separate
these into those directly and indirectly dependent upon the
outcome variable. The latter is vastly more ambitious but
has the potential to reveal far more about key features of
complex disease systems than existing commonly used ap-
proaches. This is the central message of the work presented:
Additive Bayesian network analyses are superior to stan-
dard approaches for inferring statistical dependencies from
complex observational data.

IDENTIFYING STATISTICAL DEPENDENCIES BY USING

MULTIVARIABLE REGRESSION

When exploratory analyses of data comprising many var-
iables are performed, it is common to utilize some form of
multivariable regression in which a variable selection
process is then used, the goal being to search for variables
that are statistically significantly associated with, for
example, an outcome variable such as disease presence.
Stepwise regression searches are widely used (16–19)
despite being viewed rather negatively in the epidemiologic
and biostatistical literature (20–22). Such automated search-
es are arguably overused or, rather, the results from such
analyses are too often presented without sufficient addition-
al checks to ensure the robustness of associations against
overfitting (23).
In rapidly developing and increasingly data-rich fields

such as genetic epidemiology, computational biology, and
bioinformatics, automation in statistical modeling is stan-
dard and, indeed, arguably essential when faced with ex-
ploring observations from large numbers of potentially
interdependent variables. That automated searches tend to
overfit is well known. There are, however, well-established
techniques for addressing this; 2 of the most commonly uti-
lized are model averaging (24, 25) and parametric boot-
strapping (26), both of which are explored in the later case
study analyses.

IDENTIFYING STATISTICAL DEPENDENCIES BY USING

BAYESIAN NETWORKS

Bayesian network analysis is a form of statistical model-
ing that derives, from empirical data, a graphical network
describing the dependency structure between variables,
where this is formally depicted as a directed acyclic graph
(DAG). Bayesian networks are widely used in areas such
as systems biology (27–29), human immunodeficiency
virus (HIV) and influenza research (30–33), and also analy-
ses of complex disease systems (34–37). The origins of
Bayesian network modeling lie within the machine-learning
and data-mining literature (27, 38) with an accessible non-
technical introduction (28).
In multivariable regression analyses, the goal is to iden-

tify statistically significant associations between an outcome
variable and one or more covariates. Here, “association”
denotes that the variables are statistically dependent; it says
nothing on whether the variables are directly or indirectly

dependent. To borrow an example from Hernán et al. (14),
in multivariable regression analyses with “lung cancer” as
the outcome variable and “smoking” and “yellow fingers”
as covariates, it may then be expected that one or both of
these covariates would be identified as statistically signifi-
cantly associated with lung cancer. In contrast, in a Baye-
sian network analysis, it would be expected that smoking
and lung cancer be identified as directly dependent, yellow
fingers and smoking as directly dependent, but that yellow
fingers and lung cancer not be identified as directly depen-
dent. In terms of a DAG, this would describe a model with
2 arcs (one between lung cancer and smoking and a second
between yellow fingers and smoking) but with no arc
between yellow fingers and lung cancer. Note, we have not
specified the direction of these arcs. In a Bayesian network
analysis, each DAG is formally a factorization of the joint
probability distribution of the observed data and, because
of likelihood equivalence, it is the presence of arcs between
variables and not their direction that is the notable feature.
Consider the joint probability of variables X and Y, P(X,

Y). Theory gives P(X, Y) = P(X|Y) P(Y) and P(X, Y) = P(Y|
X) P(X), where the former can be depicted as a DAG with
one arc, from Y to X, and the latter with one arc, from X to
Y. The practical implication of this is that, by using ob-
served data alone, it is not possible to statistically discrim-
inate between different DAGs from within the same
likelihood equivalence class, as these are probabilistically
identical. However, determining likelihood equivalence
between DAGs is extremely difficult in all but the simplest
cases; refer to Web Appendix 1, the first of 13 Web appen-
dices available on the Journal’s website (http://aje.
oxfordjournals.org/), for more details. Because of these
complications, it is typical to ignore arc direction in Baye-
sian network analyses (30–33, 39), although notable excep-
tions are analyses of longitudinal data where dynamic
Bayesian networks may be utilized (40). Using prior belief
to impose explicit arc direction may be of some value in
analyses that attempt to combine statistical dependency
with causality, and this is returned to later.

MATERIALS AND METHODS

Case study data

The PSLSM Survey is a biennial survey of a large
number of social, environmental, and economic indicators,
motivated and directed in part by efforts to meet the United
Nations Millennium Development Goals. The survey is
conducted at the household level, sampling from the major-
ity (approximately 97%) of the population across Pakistan
in the data analyzed here from 2005 to 2006. According to
the Federal Bureau of Statistics, Islamabad, Pakistan,
15,453 households were surveyed comprising 110,909 indi-
viduals, of whom 18,202 were under 5 years of age. The
survey includes around 250 questions, from which a broad
subset (i.e., 40 questions from the questionnaire) was in-
cluded in the following analyses based on potential rele-
vance to childhood diarrheal disease determined from their
inclusion in previous studies (refer to Web Appendices 2
and 3 for variable descriptions and details of previous
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studies). Diarrheal presence was taken from a binary ques-
tion of whether children under 5 years of age in the house-
hold had experienced diarrheal symptoms within the
preceding 30 days.

Bayesian network modeling formulation

Standard multivariable statistical models—linear or gen-
eralized linear models or their variants—are additive, that
is, they describe the mean value of some response variable
conditional on a given covariate pattern, as an additive con-
tribution from each covariate. In contrast, Bayesian network
models for categorical data, the most commonly utilized
form of Bayesian network, use a parameterization where
each and every covariate pattern is modeled by using inde-
pendent sets of parameters; that is, the parameters cannot
be interpreted as main effects or interaction effects (Web
Appendix 4). This formulation may also be far from parsi-
monious (41) and does not provide any ready interpretation
of the model parameters. The standard formulation of
Bayesian networks (27) does facilitate conjugacy; that is,
all parameter estimates in a Bayesian network can be com-
puted analytically for the 3 usual types of Bayesian
network (categorical, Gaussian, and a special variant of
mixed categorical and Gaussian variables (42)).

At the cost of a loss of conjugacy, it is possible to formu-
late Bayesian network models that are direct analogs of stan-
dard multivariable linear and generalized linear models,
where each variable in the data is modeled by an additive
multivariable regression model, with an appropriate link
function (e.g., a logit) if required (Figure 1). As in classical
Bayesian network models, additive Bayesian networks are
described by a DAG. The price for this considerably greater

model flexibility is that the goodness of fit and model param-
eters now must be estimated numerically rather than analyti-
cally. Laplace approximations (43) are used here.

Bayesian inference requires prior distributions, and in a
Bayesian network there are 2 possible types of priors:
priors on the model parameters and priors on the DAG. In
terms of parameter priors, the approach utilized here as-
sumes uninformative Gaussian priors with zero mean and
large variance for each of the regression parameters across
all parts of the model, as well as diffuse gamma priors for
the precision parameter in Gaussian nodes of the model. In
terms of structural priors, it is currently assumed that each
DAG structure is equally plausible in the absence of any
data. Imposing prior causal knowledge onto network struc-
tures, for example, by imposing conditions on arc direction,
is returned to later.

Model selection in statistical analyses

Statistical model selection comprises 3 parts, denoted
“A” (choosing a general form of model); “B” (deciding the
scope of the model search space and how to cross it); and
“C” (deciding how to summarize the results from “B”).

For the PSLSM case study, the first analysis presented
comprises a conventional stepwise regression search. There-
fore, “A” is standard multivariable logistic regression. “B,”
a stepwise search, forwards from a null model and back-
wards from a full model, with comparisons performed
within a maximum likelihood framework, as that is what is
provided in common statistical software and is most usual
in practice, and with the Akaike Information Criterion
(AIC) as the goodness-of-fit metric. For “C,” the single
best model found in “B” was then subjected to parametric
bootstrapping to identify any issues of overfitting (Web Ap-
pendix 5).

In the Bayesian network analyses, for “A” an additive
form of Bayesian network is used. For “B,” the 2 most
widely utilized “structure discovery” approaches are used.
First, the local search heuristic given by Heckerman et al.
(27) is analogous to the usual stepwise search in multivari-
able regression. Second, there is a search over node order-
ings rather than DAG structures. Order-based approaches
were introduced by Friedman and Koller (44) and then sub-
stantially extended by Koivisto and Sood (45). The motiva-
tion behind local heuristics (including stepwise searches in
multivariable regression) is that they will identify high-
scoring, well-fitting models when it is not computationally
feasible to identify the very best model with any certainty.
The second approach for searching for optimal Bayesian
network models is to collapse DAGs over node orderings;
a node ordering is simply a list of the nodes, for example,
as indices 1 through n, where a given DAG structure is
consistent with an ordering if, and only if, the parents of
each node precede their child node in this list. Orderings
can be thought of as groups of DAG structures (those struc-
tures which are consistent with that particular ordering),
and note that each DAG may be consistent with more than
one ordering; for example, the empty DAG (no arcs) is
consistent with every possible ordering. The basic idea is
that, by searching across orders, the dimension of the

Figure 1. Example of an additive Bayesian network model
comprising 3 binary random variables (X1, X2, X5) and 2 continuous
(Gaussian) variables (X3, X4). The model for each node is a
generalized linear regression with identity or logit link function as
appropriate. Let πi for i = 1, 2, 5 denote the probability of observing a
success: P(Xi = 1) = 1−P(Xi = 0) and μi denote the mean of random
variable Xi for i = 3, 4. X2 is independent of the other variables with
log{π2/(1− π2)} = β2,0; X4 is conditionally dependent upon X2 with
μ4 = β4,0 + β4,1 X2; X5 is conditionally dependent upon X4 with log{π5 /
(1− π5)} = β5,0 + β5,1 X4; X3 is conditionally dependent upon X4 with
μ3 = β3,0 + β3,1 X4; and X1 is conditionally dependent upon X2, X3, X5

with log{π1/(1− π1)} = β1,0 + β1,1 X2 + β1,2 X3 + β1,3 X5.
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search space is vastly reduced from ≈n!2ðn2Þ unique DAGs
down to n! unique orders (45), although the latter may still
be computationally impractical. The price for this reduction
in size of search space is that searching across orders is
biased relative to searching across DAGs.
Finally, consider step “C,” how to summarize the results

of Bayesian network model searches. Two options are
either to construct some form of summary or “average”
model by pooling across heuristic search results or else to
select a single “best” model. A popular approach for the
former is to construct a majority consensus network that
builds a DAG comprising all those arcs present in at least a
majority (>50%) of the DAGs identified by using heuristic
searches (30, 35). Because of likelihood equivalence, it is
common to collapse over arc direction to avoid missing im-
portant structural features. For example, if arc X→ Y
appears in 50% of heuristic results, and Y→ X appears in
the other 50%, then even although this direct dependency
between X and Y features in every search result it will never
appear in a (directed) majority consensus network. For this
reason, collapsing over arc direction when presenting results
of Bayesian network analyses is common (30, 39). The
purpose of summarizing over many DAGs is to address
concerns of overfitting, and it is directly analogous to the
ubiquitous use of majority consensus trees in phylogenetics
(46). The second option in “C” is to choose a single best
model, with the most obvious concern being overfitting,
and parametric bootstrapping is not generally computation-
ally feasible here. An accepted approach for choosing a
single best model is to use the exact order-based method
(45) that finds the globally most probable posterior DAG.
All modeling results were carried out in R (47) by using

an R library called “abn” developed by the authors for the
purpose of analyzing epidemiologic data. This software is
freely available for download from CRAN (http://cran.
r-project.org/).

RESULTS

Multivariable regression

Table 1 shows the variables in the optimal model from
the stepwise multivariable regression analysis (Web Appen-
dix 6). There are 12 covariates, many of which have low
P values. To identify spurious covariates arising from
overfitting, we used parametric bootstrapping to generate
10,000 data sets from the optimal model. The parametric
bootstrapping results provide convincing evidence that each
of the 12 identified covariates is robust in terms of being
statistically associated with the presence of diarrhea (Web
Appendix 6). This regression model can be represented as a
DAG where each of the explanatory variables is a node
with an arc directed toward the node for the response vari-
able (Figure 2).

Additive Bayesian network

Three different, although related, sets of results are pre-
sented, all with the same goal of identifying those variables
directly dependent upon the presence of diarrhea.

Heuristic search across 13 variables. The standard local
heuristic search (27) was applied to the subset of 12 covari-
ates identified in the optimal multiple regression model. A
(directed) majority consensus additive Bayesian network
model was constructed by pooling results across 20,000
heuristic searches; it was sufficient for robust results (Web
Appendix 7). This summary network (Web Appendix 7)
identifies “dry pit latrine” and access to an atypical “other
water source” as directly dependent upon diarrhea. Figure 3
shows an undirected majority consensus additive Bayesian
network constructed from the same 20,000 heuristic search-
es. This now additionally has “no formal garbage collec-
tion” as directly dependent upon diarrhea, although its
structural support is relatively weaker in terms of how often
it was chosen for inclusion in each locally optimal DAG
(Web Appendix 7), compared with the other 2 variables.
Posterior density estimates for the 3 variables directly de-
pendent upon diarrhea can be found in Web Appendix
8. Note that the odds ratio estimates in Table 1 and posteri-
or densities will be identical in any additive Bayesian
network that has only these 3 variables with arcs to
diarrhea.

Exact search for most probable DAG across 13 variables.
The most probable posterior DAG was identified by using
the exact method (45), again on the reduced set of 13

Table 1. Results of Stepwise Regression Search and Additive

Bayesian Network Analyses (With All 3 Variables Directly

Dependent Upon Diarrhea), Pakistan Social and Living Standards

Measurement Survey, 2005–2006

Indicator
Odds
Ratio

P Valuea
Bayesian
Odds Ratio

Child’s age 1.05 0.012

No. of rooms 0.95 0.007

Sex, male 1.14 0.012

Dwelling type, part of
compound

0.70 0.020

Drinking water source

Piped 0.85 0.011

Canal/river/stream 0.65 0.0087

Spring 0.76 0.13

Other 0.46 0.0016 0.49

Type of toilet

Flush, connected to
open drain

0.84 0.046

Dry pit latrine 0.66 <0.0001 0.67

Connection to sewerage,
yes, covered drains

0.72 0.064

Organizer of garbage
collection from house,
no formal system

1.23 0.0048 1.32

a P values are from type III chi-squared tests. The odds ratios are

marginal; for example, for dry pit latrine, the odds ratio = 0.66, which

is relative to not having a dry pit latrine (ignoring all other

covariates). For the continuous variables (age and number of

rooms), the odds ratios are in respect of a 1-unit increase.
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variables (specific details are given in Web Appendix 9).
This exact search identifies a maximal additive Bayesian
network that has “dry pit latrine” and access to an atypical
“other water source” as directly dependent upon diarrhea
but not “no formal garbage collection.” The goodness of fit
of this model is −105,028.4 (log marginal likelihood), and
it has 32 arcs in total. During the previous 20,000 search
heuristics across DAGs, a number of models with improved
goodness of fit were identified (e.g., −105,025.9 with 34
arcs), which demonstrates the bias toward parsimony in
order-based searches, as the fewer arcs a DAG has, the
more orders it will be consistent with.

Heuristic search across all 41 variables. The standard
heuristic search (27) over 41 variables was not computa-
tionally feasible, nor was the exact order-based method. By
necessity, an ad-hoc approach was instead utilized by
adding several constraints to the standard heuristic search
(Web Appendix 10). A majority consensus additive Baye-
sian network model was constructed by pooling results
across ≈500,000 separate searches. This model identifies
the same 3 variables as directly dependent upon diarrhea as
in the undirected majority consensus network with 13

variables. The additive Bayesian network model supports
182 interdependencies among the 41 variables, where 179
are dependencies indirectly related to the presence of diar-
rhea, that is, between variables which can potentially affect
disease presence, but only through their associations with
other variables (refer to Web Appendix 11 for a detailed
description of the model).

DISCUSSION

The objective of the analyses presented was to identify
potential determinants of the presence of diarrhea and, in
particular, to contrast results by using standard multivari-
able regression with those of an epidemiologic systems ap-
proach utilizing additive Bayesian networks.

Comparison of methods

Table 1, along with Figures 2 and 3, shows clearly that
the 2 approaches provide very different, though overlap-
ping, results. The additive Bayesian network results suggest
that most—9 out of 12—of the covariates identified in the

Figure 2. Final model in stepwise (forwards and backwards) multivariable regression search depicted as a directed acyclic graph. Parametric
bootstrapping statistically supports all 12 covariates in this model. Ovals are continuous variables; squares, discrete.
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Figure 3. Undirected majority consensus additive Bayesian network model constructed by pooling results across 20,000 heuristic searches.
Only 3 variables (no formal garbage collection, access to a dry pit latrine, and access to an atypical other water source) are supported as
directly dependent upon the presence of diarrhea.
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multivariable regression analyses, while associated with the
presence of diarrhea, are only indirectly rather than directly
related to this outcome.

Additive Bayesian network models are simply multivari-
ate extensions of standard multivariable regression and
nothing more. The single key conceptual difference is that
additive Bayesian network models are multidimensional
and consider all associations among all variables simultane-
ously. It is therefore intuitively reasonable to expect both
approaches—additive Bayesian network and multivariable
regression—to both identify in common those variables
with the strongest degree of statistical support (and ir-
respective of whether different goodness-of-fit metrics or
inferential framework is used, e.g., AIC or marginal likeli-
hood, Bayesian or non-Bayesian). This is exactly what was
found in the analyses presented (Table 1): The 3 variables
with lowest P values in the multivariable regression are
also those supported as directly dependent upon diarrhea in
the additive Bayesian network results.

In the multivariable regression analyses, “number of
rooms” was identified as associated with diarrhea and, with
P = 0.007 sufficiently low to be typically considered strong
statistical evidence, this was further supported through the
bootstrapping results. This variable has many direct depen-
dencies in the additive Bayesian network (Figure 3; Web
Appendix 11) but only with variables other than diarrhea.
Biologically, “number of rooms” cannot be directly depen-
dent upon diarrhea as, although it is likely to be related to
the living and environmental conditions in a household and
the additive Bayesian network model provides empirical
evidence of this, intuitively, it cannot contribute directly to
diarrheal infection. This suggests that “number of rooms”
has been identified in the multivariable regression model as
a result of association induced with diarrhea through a
network of interdependencies across the disease system.
This highlights the difficulty of interpretation in the tradi-
tional multivariable regression model where it is possible
for variables with low P values to be identified as associ-
ated with disease but that are likely to be only indirectly
related to the outcome variable.

Biologic interpretation of results

The decreased risk of diarrhea from dry pit latrines sug-
gests that infectious enteric pathogens are efficiently
removed from fecal-oral transmission cycles. Using a uni-
variate regression model, we found that the absence of a
toilet in a household was a substantially greater risk factor
for diarrhea (odds ratio = 5.7, 95% confidence interval:
5.07, 6.50) than the presence of any type of toilet. The
absence of arcs connecting “no toilet in the household” to
childhood diarrhea suggests, however, that those houses
lacking toilets have a network of confounding factors that
modify the risk of enteric infection. For example, a fuller
description of the disease system (Web Appendix 11)
shows that the absence of a toilet is dependent upon other
descriptions of the household, such as the absence of an
electrical connection (as an indicator of socioeconomic
status), with certain water sources, especially those that do
not require infrastructure, such as ponds, streams, and

springs, and also no formal garbage collection. What might
be deduced from this is that the lack of a toilet is an index
of lower socioeconomic status and therefore living condi-
tions. Socioeconomic status is itself associated with educa-
tional levels and certain behaviors, for example, unhygienic
practices that increase the risk of diarrhea.

Using “other” sources of water is comparatively unusual
in the data (2.1% of households). Given the breadth of
options covered across the other 5 categories of water
sources (Web Appendix 2), “other water source” is some-
what vague but includes buying water from a local seller
and collecting water from a tanker-supplied public stand-
pipe. Water that is further removed from either natural
water courses or pipe/well systems may be less susceptible
to leakage between sewerage systems and the water table
and thereby at risk of contamination with water-borne path-
ogens. Examination of the 41-variable additive Bayesian
network model shows connections from each of the water
sources to at least the alternative sewerage connections or
to the type of toilet, demonstrating the tight interlinkage
among these 3 risk categories in determining the exposure
of children to enteric pathogens. The relatively large uncer-
tainty in the log odds estimate between “other” water
sources and diarrhea (Web Appendix 8) is likely due to
both the rarity of this water source in the data and also the
ambiguous definition of this variable. Web Appendix 3
contains a list of additional references and a summary of
previous variables associated with diarrhea, including age,
which is also briefly discussed.

In the language of Hernán et al. (14), the components of
a disease system are the disease outcome, an exposure (that
directly results in disease), and a series of confounding var-
iables that act on either the exposure or both exposure and
disease outcome. Survey data, as in the PSLSM Survey, do
not necessarily contain the sort of proximal exposure that
results in infection (contact with enteric pathogens), so
much as a collection of variables that might be considered
common to both exposure (infection) and disease (patho-
genesis). It is, therefore, arguably less useful to discuss cau-
sality with respect to such an exploratory model; however,
what is both possible and useful is the partitioning of
factors into those that are directly or indirectly dependent
upon disease outcome. To illustrate this point, consider the
type of toilet that is present in a house: There are several
types of toilet in the PSLSM data, but these are all variants
of the same underlying theme of how the household dis-
poses of human excreta. It is not practical to question
whether a flushing toilet is causal of diarrheal disease so
much as the relative risk of disease given the different
types of toilet present; the actual exposure is still the
contact with enteric pathogens, which can then be stratified
(assuming such data exist) by type of toilet. In this context,
“toilet” is a confounder (according to Hernán et al.) that
can be used to stratify the more proximal exposure.

Following through a series of DAGs as subsets of the more
complete system may offer a closer parallel to causal models
that are based on expert opinion (Web Appendix 12). Assum-
ing that the absence of formal garbage collection is the expo-
sure leading to diarrheal disease, 4 alternative routes involving
4 additional confounding factors were compared. The reason
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for selecting “no formal garbage collection” was because this
variable was identified as dependent upon diarrhea in all but
the most probable DAG. There was little change in the odds
of diarrhea when no formal garbage collection was combined
with different combinations of other confounders in the alter-
native DAGs. The interesting exception is the combination of
“other” sources of water and no formal garbage collection.
With the more defined water sources, the odds of diarrhea in
houses lacking formal garbage collection are approximately
1.2; however, the odds rise to 1.3 when water sources are
“other.” The explanation for this may be the results of lack of
running water to remove the buildup of refuse (and potentially
excreta) when garbage is not regularly removed. The accumu-
lation of refuse that has no formal disposal and its removal
that is presumably irregular provide a permissive breeding
ground for enteric pathogens. This hypothesis requires more
targetted studies; however, neither garbage nor water is of
itself the “cause” of diarrheal disease despite both being likely
sources of enteric pathogens.

Introducing prior causal knowledge

Bayesian network modeling is typically concerned with
automated structure discovery (searching for a DAG which
best describes the statistical relations in observational data),
in this case, the PSLSM. In causal inference, on the other
hand, the focus is typically on testing whether a given set
of assumptions is sufficient for quantifying causal effects
from observational data, conditional on a causal diagram
that encodes all the relevant domain-specific assumptions
(12, 14). The former is objective (empirically derived
DAGs) but lacks a causal component, while the latter pro-
vides causal insight but whose weakness is the potentially
subjective justification of the causal diagram. An obvious
question is, therefore, how can prior causal knowledge be
integrated into automated structure discovery?
A very rudimentary approach that repeats the previous heu-

ristic additive Bayesian network analyses (across 13 vari-
ables) by introducing some simple commonsense prior
causal constraints is given in Web Appendix 13. This model-
ing prohibits arcs emanating from the diarrheal node and pre-
vents “number of rooms” being directly dependent upon
diarrhea. This simple informative structural prior now gives
an undirected majority consensus DAG with the same 3 vari-
ables as previously identified as directly dependent upon di-
arrhea, but where support for an arc connecting “no formal
garbage collection” to diarrhea is now 100% (appears in all
20,000 searches), whereas using the previous uninformative
structural prior, this was only 58% and it also didn’t appear
in the previous directed majority consensus network (Web
Appendix 7). The use of directional constraints alters the
model search space (as the data can discriminate between
DAGs where the arcs in these constraints are reversed provid-
ed these are in different equivalence classes) (Web Appendix
1) and so may provide different results. The key question is
whether imposing such directional constraints/informative
prior—motivated by causal considerations—is conceptually
reasonable. This is an open question.
An alternative approach—and one that seems preferable

given thecomplicationsof likelihoodequivalence—is suggested

by Heckerman et al. (27, p. 224). Rather than use an informa-
tive structural prior, it is proposed to append onto the ob-
served data additional and likely highly incomplete synthetic
observations that reflect causal beliefs. The structure learning
process is then applied to all of the data as usual, except with
the additional functionality necessary to marginalize over
missing data (48). This is an elegant approach, but its feasibil-
ity and practicality with respect to additive Bayesian network
modeling are an open question and an exciting area of future
work.
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