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Instrumental variable (IV) methods based on the physician’s prescribing preference may remove bias due to
unobserved confounding in pharmacoepidemiologic studies. However, IV estimates, originally defined as the
treatment prescribed for a single previous patient of a given physician, show important variance inflation. The
authors proposed and validated in simulations a new method to reduce the variance of IV estimates even when
physicians’ preferences change over time. First, a potential “change-time,” after which the physician’s preference
has changed, was estimated for each physician. Next, all patients of a given physician were divided into 2
homogeneous subsets: those treated before the change-time versus those treated after the change-time. The
new IV was defined as the proportion of all previous patients in a corresponding homogeneous subset who were
prescribed a specific drug. In simulations, all alternative IV estimators avoided strong bias of the conventional
estimates. The change-time method reduced the standard deviation of the estimates by approximately 30%
relative to the original previous patient-based IV. In an empirical example, the proposed IV correlated better with
the actual treatment and yielded smaller standard errors than alternative IV estimators. Therefore, the new method
improved the overall accuracy of IV estimates in studies with unobserved confounding and time-varying prescribing

preferences.

confounding factors (epidemiology); decision support techniques; pharmacoepidemiology

Abbreviations: AFFIRM, Atrial Fibrillation Follow-Up Investigation of Rhythm Management; IV, instrumental variable; RMSE, root

mean squared error.

The study of pharmacoepidemiology increasingly relies
on large administrative health databases (1, 2) in which
many clinical risk factors are not recorded (3, 4), which
can lead to concerns about unobserved confounding (5).
One generic approach that, under certain assumptions,
may remove unobserved confounding bias uses instrumental
variables (IVs), which are associated with the outcome
exclusively through the treatment (6-8). However, the
variance of estimates based on weak instruments may be
inflated to the extent that the estimates may be less accurate
than the biased conventional estimates (8, 9). Yet, many
instruments used in observational studies of medications

are relatively weak (10, 11). Therefore, it is important to
develop and validate methods to increase the strength of
instruments and stabilize the IV estimates.

Although finding an adequate instrument in pharmacoe-
pidemiology is challenging (12), in 2006, Brookhart et al.
(13) proposed to define the IV as the physician’s subjective
preference for 1 of 2 alternative treatments. Indeed, impor-
tant differences between individual physicians’ prescribing
patterns persist independently of patients’ characteristics
(14, 15). Because subjective preferences are not observable,
the IV was operationalized as the treatment prescribed to the
previous patient of the same physician (13). The IV was
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based on the treatment prescribed to a single previous pa-
tient because of concerns about possible changes over time
in physicians’ preferences (13), as documented by other
empirical studies (10, 15). Such changes may be triggered
by publication of the results of influential clinical trials
(16, 17), visits from pharmaceutical company representa-
tives (18), “Dear Doctor” letters (19), or a recent negative
clinical experience with a previously preferred drug. Some
of these factors could induce an abrupt change in a short
time interval (20-22).

On the other hand, defining the IV on the basis of only
a single (previous) patient may inflate the variance of
the IV estimates by 1) dichotomizing the instrument and
2) making it very dependent on the characteristics of the
previous patient (9). To address these concerns, we proposed
and validated in simulations a new method with which we
attempted to stabilize the physician preference-based IV
estimates when these preferences do change over time.

MATERIALS AND METHODS

The physician preference-based IV estimator by
Brookhart et al.

Brookhart et al. (13) operationally defined the IV as
the treatment prescribed to the single most recent patient
of a given physician. First, the n; patients of a given ith
physician are ordered by the increasing date of treatment
initiation, and then the IV for patient j = 2,. . ., n; is defined
as the treatment prescribed to patient j — 1. The IV approach
was implemented by using 2-stage least-squares regression,
which is recommended for weak instruments (6, 23, 24).
The 2-stage least-squares analysis involves estimating 2 con-
secutive multiple linear regression models (23). The first
model predicts the probability of patient j (j = 2,..., n;)
of a given physician i being prescribed drug “B” (T}; = 1
vs. T;; = 0 for drug “A”), conditional on the instrument
(IV;)) and the vector X;; of m covariates (X;; — X,,;) of
patient j of physician i:

P(Ty = 1|1V, Xy) = B+ BiIVi + > BpnXpis (1)
p=1

where IV;; = T;; _ 1y (i.e., the treatment assigned to the
previous patient j — 1 of the same physician) and ; quan-
tifies the association between the I'V and the actual treatment
in terms of adjusted risk difference.

The second model predicts the outcome of the jth patient
(Y;) conditional on probability of treatment with drug B,
estimated in the first step (P(T}; = 1 [TV, X;j)), and observed
covariates (X;; — X,,;;)):

P(Y; = 1|P(T; = 1[IVy, Xy), X))

=+ o P(Ty = 1|IVy, X;) + Za(pﬂ)xpip (2)
p=1

where o, is the IV estimate of the effect (adjusted risk
difference) of the treatment on the outcome (23).
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New ‘“‘change-time” IV estimator

We proposed a new method that modifies the IV approach
originally proposed by Brookhart et al. (13) to measure
a physician’s preference based on prescriptions dispensed
to a larger number of patients while accounting for potential
changes over time in physicians’ preferences. To this end,
we first adapted the change-point method (25) to test
whether the physician’s prescribing preference did change
during the study period and estimated the time of such
change.

The algorithm involves the following 5 steps, which are
repeated for each of i = 1,.. ., N physicians in the database:

1. Rank the n; patients who received prescriptions from
the ith physician by increasing calendar time of their
prescriptions.

2. Fit a multivariable logistic regression no-change model,
which predicts the probability of the ith physician’s
patients being prescribed drug B (7}; = 1) based on avail-
able patients’ characteristics X;; — X,,;;, while assuming
the preference remained constant across the study period:

Logit[P(Ty = 1) = By + Y _ B, Xy 3)
p=1

Denote by D(0); the deviance of the no-change model

(equation 3) for physician i.

3. Test whether there is any systematic change in the pre-
scribing preference of physician i and, if so, estimate the
time of this change. This step involves 3 substeps:

3.1. For each patient (j = 3,..., n; — 3) of physician i,
estimate the difference (d;;) in the proportions of
prescriptions for drug B among “later” (k > j) ver-
sus “earlier” (k < j) patients (changes affecting <4
patients cannot be reliably identified):

dj = ZISk;;‘ Tk _ Zjﬂgcgz,- Ti"_ (4)
J ni—j

If |dyj| < 0.2 for all patients j, we assume there is no
change in physician i’s preference and thus omit
steps 3.2, 3.3, and 4. However, if |d;| > 0.2 for at
least 1 j (3 < j < n; — 3), we assume physician i’s
preference did change and proceed to estimate the
time of such change in substeps 3.2 and 3.3.

3.2. Fit for each patient j for whom |d;| > 0.2 a change-
time model that expands the no-change model
(equation 3) by adding a binary indicator of the
patients being prescribed after the jth patient (i.e.,
Hk>jl=1ifk>jor I{k > j} =0 for k <)):

Logit[P(Ty; = 1)]
=Bo+ > BXpj + vI{k > j}. (5)
p=1

The coefficient v in equation 5 represents the av-
erage adjusted difference in the ith physician’s pro-
pensity to prescribe drug B between later (k > j) and
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earlier (k < j) patients. Denote by D( j) the deviance
of the change-time model (equation 5), with the
presumed change after the jth patient.

3.3. Identify the optimal change-time model that corre-
sponds to the lowest deviance among all patient-
specific models estimated in step 3.2 and denote its
deviance as D j*) and the corresponding patient’s
index by j*.

4. Compare the fit of the no-change model (equation 3)
from step 2 with the optimal change-time model (equa-
tion 5) from step 3.3, based on the Akaike information
criterion, calculated as deviance + 2 X P, where P is the
number of parameters in a model (26). Given that the
optimal model in equation 5 involves estimating 2 addi-
tional parameters with respect to the model in equation 3
(i.e., the optimal change-time j* in step 3.3 and the cor-
responding change in preference y in equation 5), the fit
of the no-change model (equation 3) is considered better
if and only if

D(0); < D;(j*) +4, (6)

that is, if its deviance is less than 4 points higher than that
of the optimal change-time model.
5. Define the change-time model IV* estimator:

5.1. Ifin step 3.1 |dy| < 02 forallj=3,...,n; — 3 orin
step 4 D(0); < D;(j*) + 4, we consider the preference
of physician i to be constant over time. Accordingly,
for each patient j = 2,. . ., n;, we define the new IV, *
as the proportion of all previous patients (1,...,j — 1)
of physician i who were prescribed drug B.

5.2. If |dy| > 0.2 in step 3.1 and D(0); > D,(j*) + 4 in
step 4, we conclude that the physician’s preference
changed between patients with indexes j* and j* +
1. Then, for patients seen after the estimated change
(j > j*), the new 1V;;* is calculated as the propor-
tion of patients prescribed drug B among previous
patients seen after the change (j* + 1,...,j — 1).
For patients with j < j*, we use all previous patients
k=1,..,j—1.

An SAS program (SAS Institute, Inc., Cary, North Carolina)
containing an example that implements the method is avail-
able upon request.

SIMULATION DESIGN

We simulated a hypothetical database study comparing
the risks of a binary adverse event between 2 drugs (A vs. B)
in the presence of strong unmeasured confounding. The pre-
scribing physician’s identification number and the date of
each prescription were recorded. Initially, most physicians
preferred drug A over drug B, but some physicians switched
their preferences at a random time during the study.

The probability of a given patient’s being prescribed drug
B depended on both the physician’s current (at the time of
the prescription) subjective prescribing preference and the
patient’s characteristics, which were represented by 2 con-
tinuous variables (X1 and X3) and 1 binary (X2) variable. All
3 patient’s characteristics were also associated with the

outcome. We assumed that X1 and X2 were measured and
adjusted for in all analyses, whereas X3 was not recorded
and thus acted as the unobserved confounder (27). The
binary outcomes were generated from risk difference (linear)
models. We assumed that all other assumptions underlying
the IV method (6, 8, 13, 23) were met.

Details of data generation are presented in Web Appendix
1 (available at http://aje.oxfordjournals.org/). In summary,
we generated 200 physicians, among whom 40% initially
preferred drug B. In different simulated scenarios, the num-
ber of patients per physician varied from 10 to 50 or from
50 to 200. The frequency of preference switches among
physicians who initially preferred drug A versus drug B
varied across scenarios: 1) 33% versus 10%, 2) 50% versus
20%, and 3) 75% versus 20%. We generated from a uniform
distribution the index of the patient after whom the physi-
cian’s preference changed.

For each patient, the probability of being prescribed drug
B (Tj; = 1) was derived from a multivariable linear model
and depended on the 3 covariates and the current physician’s
preference. Physicians’ preferences were quantified by an
increase in the probability of a patient’s receiving drug B if
his or her physician currently preferred drug B. We used as
strength of preference for drug B (bpp;) either Bpp; = 0.70
for all physicians or we generated individual Bpp; values
from uniform distribution U(0.5, 0.9). Individual binary out-
comes were generated based on the probability of ¥;; = 1
derived from a linear model, conditional on the actual treat-
ment and covariates. The parameters used in different simu-
lated scenarios are listed in the first 2 columns of Tables 1-3.

The last scenario (scenario 13) was similar to scenario 12
except it assumed smooth changes over time in prescribing
preferences of individual physicians. Specifically, we assumed
a 3-linear model of changes in preferences of physicians as-
signed to the changing preference subgroup. The simulated
patterns of changes varied across individual physicians in
this subgroup depending on 3 randomly assigned parameters:
1) time (i.e., patient number) s;, after which the preference
started to change, 2) time interval /;, over which the preference
changed, and 3) the final strength P; of the preference for drug
B at the end of interval /. Accordingly, physician i, who
switched from drug A to drug B after patient s; was assumed
to: 1) have no preference (P; = 0) for drug B for his/her
patients with indexes j < s;, 2) have linearly increasing
strength of preference for patients with indexes s; < j <
(s; + 1), with Bpp; = PJI(j — sp/l;], and 3) have the final
preference of P; for all patients with indexes j > (s; + /;). For
physicians who switched from B to A, the preferences changed
in the opposite direction but followed the same patterns.
Parameters s; and /; were generated so that the change of phy-
sician i’s preference might have started before the first patient
seen in the study period (s; < 1) and/or ended after the last
patient ([s; + /;] > n;). See Web Appendix 1 for details.

Analysis of simulated data

For each simulated scenario, we generated 1,000 inde-
pendent random samples. Each sample was analyzed using
5 models that were adjusted for the treatment effect of
X1 and X2 but not for the unobserved confounder X3. In
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Table 1. Relative Bias (%) of Treatment Effect Estimates Yielded by the Change-Time Model and the 4 Alternative Models

Simulation Scenario

Relative Bias, %

Scenario [\lo. of P%ﬁ::}ns th)\',f":'sins Preference (I:nhsat:lgrijlilt‘: Alemetive foddl
No. P;::en-t ol Ps:ef-?rﬁnze Ps:ef-(:rinze for Drug B® Variable Model1 Model2 Model3  Model 4
ysician witche: witche Model
From A to B, % FromBto A, %
1 10-50 33 10 0.7 5.6 51.6 0.7 25 1.9
2 10-50 33 10 U(0.5, 0.9) 6.0 48.3 2.8 0.9 1.2
3 10-50 50 20 0.7 4.6 50.2 -1.8 -0.5 —0.1
4 10-50 50 20 U(0.5, 0.9) 6.9 494 2.3 2.6 21
5 10-50 75 20 0.7 12.9 53.8 5.7 7.3 71
6 10-50 75 20 U(0.5, 0.9) 5.9 46.7 4.7 0.9 0.4
7 50-200 33 10 0.7 -0.7 50.2 —2.6 -25 -25
8 50-200 33 10 U(0.5, 0.9) 15 46.4 0.4 0.6 0.2
9 50-200 50 20 0.7 4.6 51.7 41 3.6 3.1
10 50-200 50 20 U(0.5, 0.9) 3.2 47.5 1.3 1.3 1.9
11 50-200 75 20 0.7 0.7 49.7 -3.8 -0.7 -1.1
12 50-200 75 20 U(0.5, 0.9) 25 48.0 0.6 23 1.0
13 50-200 75 20 Smooth change 3.4 47.9 -21 1.1

& Model 1 was the conventional model; in model 2, the instrumental variable was based on the last patient; in model 3, the instrumental variable
was based on all previous patients; and in model 4, the instrumental variable was based on the true change-time.

® Increase in the probability of prescribing drug B for patients of physicians preferring this drug: 0.7 = fixed risk difference (70%) for all
physicians; U(0.5, 0.9) = risk difference generated from a uniform distribution U(0.5, 0.9); and smooth change = smooth change in preference.

addition to the proposed change-time IV model, the follow-
ing models were estimated:

1. model 1, the conventional model that was fitted through
ordinary least squares;

2. model 2, which used the last patient-based IV proposed
by Brookhart et al. (13);

3. model 3, which defined the IV as the proportion of all
previous patients of physician i who were prescribed
drug B (i.e., ignoring any potential changes in the phy-
sicians’ preferences); and

4. model 4, the unrealistic IV model, which was similar to
the change-time model but was based on the ‘“‘true”
(simulated) change-time for each physician.

On the basis of results aggregated across simulated samples,
alternative treatment effect estimates (risk differences) were
compared with respect to relative bias, empirical standard
deviation, overall accuracy (quantified by the root mean
squared error (RMSE)) and the coverage rate of the 95%
confidence intervals. The strengths of the alternative IVs
were assessed through their partial correlation with the actual
treatments of individual patients, based on the first stage
2-stage least squares model. See Web Appendix 2 for details.
Simulations were performed using SAS, version 9.2.

RESULTS
Relative bias and coverage rates

Table 1 shows the relative bias of the treatment-effect
estimates obtained by using alternative models. Because
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of failure to adjust for the unobserved confounder, conven-
tional model 1 underestimated the treatment effect by about
50% (Table 1) and yielded coverage rates of the 95% con-
fidence intervals as low as 51%—85% or 42%-50% for sce-
narios with 10-50 or 50-200 patients per physician,
respectively (data not shown). In contrast, all IV-based
models (change-time model and models 2—4) produced rel-
ative biases uniformly below *15% (Table 1) and accurate
coverage rates between 94% and 96% (data not shown). The
bias of change-time model estimates was somewhat larger
than that for simpler IV models, even if the 95% confidence
intervals for bias of different IV estimates overlapped
(data not shown).

Empirical standard deviations

Table 2 shows the standard deviations of change-time
model estimates (sixth column) and their ratios to the stan-
dard deviations of the 4 other models (ratios <1 in columns
7-10 indicate lower variance for change-time model esti-
mates). Conventional model 1 produced systematically
lower standard deviations. There were systematic, marked
differences in standard deviations of alternative IV esti-
mates. The change-time model reduced by about 30% the
standard deviation of model 2 (IV based on the last patient)
(13) and by 6%-21% the standard deviation of model 3
(IV based on all previous patients). The latter reduction in-
creased with increasing frequency of changes in physicians’
preferences, which were ignored in model 3. Interestingly,
the variance reduction, relative to last patient-based IV
model 2, achieved by the change-time model in scenario
13, with smooth gradual changes in physician preferences,
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Table 2. Empirical Standard Deviations of Treatment Effect Estimates Yielded by the Change-Time Model Relative to Standard Deviations

Yielded by the 4 Alternative Models

Simulation Scenario Ratio of SDs*"
SD of
Physicians Physicians Estimates
Scﬂ:rio Pat:i?\._t:_fper Prgg:?::ce Prgg:‘)::ce fF;:eIf; ':;gi Ch?:;e}¥ii1e Model 1 Model 2 Model 3 Model 4
Physician Switched Switched IV Model
From A to B, % From B to A, %
1 10-50 33 10 0.7 0.0155 1.53 0.73 0.94 1.00
2 10-50 33 10 U(0.5, 0.9) 0.0148 1.57 0.77 0.90 0.98
3 10-50 50 20 0.7 0.0149 1.55 0.72 0.83 0.98
4 10-50 50 20 U(0.5, 0.9) 0.0150 1.51 0.75 0.86 0.98
5 10-50 75 20 0.7 0.0154 1.63 0.71 0.79 0.99
6 10-50 75 20 U(0.5, 0.9) 0.0150 1.54 0.72 0.85 1.00
7 50-200 33 10 0.7 0.0070 1.47 0.68 0.91 1.00
8 50-200 33 10 U(0.5, 0.9) 0.0069 1.42 0.73 0.93 1.00
9 50-200 50 20 0.7 0.0069 1.45 0.70 0.89 1.00
10 50-200 50 20 U(0.5, 0.9) 0.0072 1.50 0.72 0.87 1.00
11 50-200 75 20 0.7 0.0070 1.50 0.69 0.83 0.99
12 50-200 75 20 U(0.5, 0.9) 0.0070 1.46 0.71 0.82 0.99
13 50-200 75 20 Smooth change 0.0083 1.75 0.65 0.94

Abbreviations: |V, instrumental variable; SD, standard deviation.

& Ratio of the change-time model-based SD (shown in column 6) to the SD of the respective alternative model.

® Model 1 was the conventional model; in model 2, the instrumental variable was based on the last patient; in model 3, the instrumental variable
was based on all previous patients; and in model 4, the instrumental variable was based on the true change-time.

¢ Increase in the probability of prescribing drug B for patients of physicians preferring this drug: 0.7 = fixed risk difference (70%) for all
physicians; U(0.5, 0.9) = risk difference generated from a uniform distribution U(0.5, 0.9); and smooth change = smooth change in preference.

was similar to scenario 12, with abrupt changes (Table 2).
Finally, change-time model estimates had standard devia-
tions similar to unrealistic model 4, which relied on the true
time of change.

Overall accuracy

Figure 1 shows the overall accuracy of the treatment
effect estimates across the 13 scenarios described in Tables
1-3, with a higher RMSE indicating lower accuracy.
Higher RMSEs for scenarios 1-6, in which there were
10-50 patients per physician, reflect the lower sample size.
In those scenarios, conventional model 1 produced
RMSEs that were slightly but systematically lower than
those from the change-time model. However, in scenarios
7-13, which had a larger sample size, change-time model
estimates had higher overall accuracy (Figure 1). Compar-
isons of RMSEs of practically unbiased IV estimates
mostly reflect the differences in their standard deviations,
as shown in Table 2. Accordingly, the proposed change-
time model estimates had systematically higher overall
accuracy than did the alternative IV models 2 and 3, in-
cluding scenario 13, which had gradual changes in prefer-
ences (Figure 1). Still, when comparing the 3 realistic IV
estimates in individual samples, the change-time model
estimate was closer to the true risk difference in 37%-
44% of samples, versus 24%-31% for last patient-based
model 2 and 29%—-35% for all patients-based model 3 (Web
Table 1).

Strength of instruments

Table 3 shows the mean squared partial correlation be-
tween alternative IVs and actual treatment. The change-
time model yielded, on average, a stronger instrument than
did models 2 and 3 (Table 3), which explains the lower
variance of change-time model estimates (Table 2). Web
Appendix 3 provides results on the accuracy of detection
of preference changes and their estimated times in the
change-time model.

APPLICATION

To compare the performance of alternative IV estimators
in a real-life database study, we reassessed the comparative
effectiveness of rhythm versus rate control therapy in pre-
venting death within 3 years in patients diagnosed with atrial
fibrillation in 1999-2004. In 2002, the Atrial Fibrillation
Follow-Up Investigation of Rhythm Management (AFFIRM)
(28) reported no difference in mortality rates between the
2 treatments, resulting in a significant decrease in the pre-
scribing of rhythm control drugs. Thus, we expected fre-
quent changes of treatment preferences during the study
period.

We used population-based data from the province of
Quebec, Canada. The study population included elderly pa-
tients at least 66 years of age who had been hospitalized
with a diagnosis of atrial fibrillation from 1999 to 2004 and

Am J Epidemiol. 2011;174(4):494-502
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Figure 1.

Root mean squared errors of treatment effect estimates yielded by the 5 models. See Tables 1-3 for descriptions of the 13 scenarios.

who had received the first atrial fibrillation prescription
within 7 days of discharge. Individual prescription records
were linked with claims records for medical services, hos-
pital discharge records, and mortality records. All subjects
had 3 years of follow-up after their initial atrial fibrillation
prescription after discharge, and the binary outcome was

death within those 3 years. The binary treatment variable
was defined as either rhythm or rate control therapy, based
on the first prescription after discharge, using the same
drugs as in AFFIRM (28). Web Appendix 4 provides details
on the study population and covariates for which we ad-
justed in all analyses. The severity of atrial fibrillation

Table 3. Mean Squared Partial Correlation Between the Instrument and the Actual Treatment

Simulation Scenario

Mean Squared Partial Correlation®

Physicians Physicians . Alternative Model®
Scenario P [\lo. of V‘(lhose V‘(lhose Preference ?:;?3:;:;::7
No- Physicin _ Switched "Sitched. for Drug B° Variable Model2  Model3  Model 4
From A to B, % FromBto A, % Model
1 10-50 33 10 0.7 0.43 0.23 0.35 0.42
2 10-50 33 10 U(0.5, 0.9) 0.45 0.25 0.37 0.44
3 10-50 50 20 0.7 0.43 0.23 0.31 0.42
4 10-50 50 20 U(0.5, 0.9) 0.45 0.24 0.33 0.44
5 10-50 75 20 0.7 0.42 0.21 0.26 0.40
6 10-50 75 20 U(0.5, 0.9) 0.44 0.23 0.28 0.43
7 50-200 33 10 0.7 0.47 0.23 0.39 0.46
8 50-200 33 10 U(0.5, 0.9) 0.49 0.25 0.41 0.48
9 50-200 50 20 0.7 0.47 0.24 0.35 0.46
10 50-200 50 20 U(0.5, 0.9) 0.49 0.25 0.37 0.48
11 50-200 75 20 0.7 0.46 0.23 0.31 0.45
12 50-200 75 20 U(0.5, 0.9) 0.48 0.25 0.32 0.47
13 50-200 75 20 Smooth change 0.38 0.16 0.33

& Mean value of the squared partial correlation, estimated from the first stage of the 2-stage least squares model (see equation 1), between the IV

and the actual treatments.

® Model 1 was the conventional model; in model 2, the instrumental variable was based on the last patient; in model 3, the instrumental variable
was based on all previous patients; and in model 4, the instrumental variable was based on the true change-time.

¢ Increase in the probability of prescribing drug B for patients of physicians preferring this drug: 0.7 = fixed risk difference (70%) for all
physicians; U(0.5, 0.9) = risk difference generated from a uniform distribution U(0.5, 0.9); and smooth change = smooth change in preference.

Am J Epidemiol. 2011;174(4):494-502
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Table 4. Risk Differences Between 3-Year Mortality Rates With Rhythm and Rate Control Therapy in Atrial Fibrillation Patients

Partial
Correlation
a Adjusted Risk Standard 95% Confidence Between the
Model Difference Error Interval PVvalue Instrumental
Variable and
Treatment
Analyses adjusted for all important measured
confounders
Change-time IV model 0.0278° 0.0396 —0.0498; 0.1053 0.4832 0.1901
Model 1 —0.0026° 0.0075 —0.0173; 0.0121 0.7559
Model 2 0.0967° 0.1159 —0.1315; 0.3228 0.4092 0.0648
Model 3 0.0652° 0.0509 —0.0345; 0.1648 0.2002 0.1477
Analyses not adjusted for 2 important measured
confounders
Change-time IV model —0.0088° 0.0400 —0.0872; 0.0696 0.8254 0.1918
Model 1 —0.0522° 0.0076 —0.0671; —0.0372 <0.0001
Model 2 0.0612° 0.1191 —0.1723; 0.2947 0.6074 0.0643
Model 3 —0.0069°¢ 0.0509 —0.1066; 0.0927 0.8914 0.1505

Abbreviation: IV, instrumental variable.

& Model 1 was the conventional model; in model 2, the instrumental variable was based on the last patient; and in model 3, the instrumental

variable was based on all previous patients.

b With adjustment for age, sex, history of diabetes, history of congestive heart failure, type of atrial fibrillation diagnosis at admission, length of

stay, and physician specialty.

¢ Adjusted for sex, history of diabetes, history of congestive heart failure, length of stay, and physician specialty.

symptoms, which is an important predictor of mortality
(29, 30), was not recorded, thereby raising concerns about
potential unmeasured confounding.

Data were analyzed using the conventional multivariable
linear regression model and the 3 IV models utilized in our
simulations. Similar to what was done in other studies (31, 32),
the IVs were defined at the level of the hospitals rather than
the physicians. Indeed, the postdischarge atrial fibrillation
treatment was likely initiated in the hospital. Furthermore,
hospitals are an important exogenous source of variation in
drug prescriptions (33, 34), as physicians within the same
hospital often follow treatment guidelines set by local opin-
ion leaders (35). Finally, in preliminary analyses, hospital-
level instruments correlated much better with the actual
treatment than the physician-based instruments (data not
shown).

Among 19,688 atrial fibrillation patients discharged from
89 hospitals, 7,698 deaths occurred within 3 years of dis-
charge. A change in prescribing preferences was detected in
63 (70.8%) of the study hospitals. Most changes (41 out of
63) corresponded, as expected, to a switch from rhythm
control to rate control.

The upper part of Table 4 shows the alternative estimates
of the difference between 3-year mortality rates of patients
treated with rhythm control drugs versus rate control drugs.
The treatment effect is uniformly nonsignificant, but both
point estimates and standard errors vary substantially.
Among IV estimators, the change-time model yielded the
point estimate closest to the null, the lowest standard error,
and the most precise 95% confidence interval. The latter
finding reflects the strongest correlation of the change-
time-based instrument with the actual treatment (Table 4).

Finally, we performed a simple experiment by excluding
2 important measured confounders: age and secondary atrial
fibrillation diagnosis at admission, both of which were as-
sociated with a higher mortality rate and with rate control
treatment. The lower half of Table 4 shows a major impact
of these exclusions on conventional estimates, which sug-
gests a very significant reduction in mortality associated
with rthythm control treatment. In contrast, the change-time
IV model yielded a completely nonsignificant risk differ-
ence that was very similar to the original conventional esti-
mate adjusted for the 2 confounders (model 1 in the upper
half of Table 4) (i.e., it compensated for the bias artificially
induced by these exclusions).

DISCUSSION

The proposed change-time model extends the physician
prescribing-based IV originally developed by Brookhart
et al. (13). In simulations, the change-time model reduced
the variance of IV estimates, but its estimates were some-
times slightly biased. Similar bias due to modification of the
original unbiased but numerically unstable estimator occurs,
for example, in marginal structural models, where weight
truncation reduces the variance but induces slight bias (36).
Still, the RMSE comparisons indicated that our estimates
were closer, on average, to the true treatment effect than
were estimates based on either the last patient (model 2)
(13) or all previous patients of the same physician (model 3).
Indeed, in both simulations and the real-life atrial fibrillation
example, the change-time model yielded the strongest in-
strument (i.e., had the highest correlation with the treatment
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actually received by individual patients). Thus, the addi-
tional computations required by our method may be worth
the effort.

In previous simulations, the inflated variance of the IV
estimates often resulted in lower overall accuracy compared
with conventional (biased) estimates (9). Yet, our change-
time IV model substantially improved the variance-bias
trade-off and, in simulations with 50-200 patients
per physician, yielded substantially lower RMSEs than did
the conventional model. Increasing the size of the physi-
cians’ practices increased both the sensitivity of detecting
the preference changes and the instrument’s strength. As
expected, the gains in the accuracy offered by the change-
time model over model 3 (all previous patients) increased
with increasing frequency of preference changes. In the case
of no or rare changes, our estimator should perform simi-
larly to model 3.

Although the proposed change-time IV estimator pro-
duced, on average, the strongest instrument, the relative
performance of different instruments varied across individ-
ual simulated samples. Furthermore, in empirical studies,
the relative strength of alternative prescribing-preference-
based IVs may vary depending on the frequency and pattern
of changes over time in these preferences. Indeed, in some
empirical studies, the instrument based on the last patient’s
prescription only was stronger than instruments based on
larger numbers of previous patients (10, 15). For all of these
reasons, the choice of the instrument most appropriate for
a given application should be considered an empirical ques-
tion. Researchers should apply several alternative IVs, in-
cluding the instrument originally proposed by Brookhart
et al. (13), its various modifications (10, 15, 32), and the
change-time model we propose, and then compare their
correlation with the actual treatment and the resulting treat-
ment effect estimates.

The validity of both the original last patient-based IV (13)
and our change-time-based IV depends on the validity of the
assumptions underlying the IV method. Hernan and Robins
(8) discussed these assumptions and their implications for
the pharmacoepidemiologic applications of prescribing
preference-based instruments, whereas Brookhart and
Schneeweiss (37) present some evidence regarding their
validity in their specific application. In general, our
change-time model IV estimator will be valid whenever al-
ternative IV estimators (10, 13, 14, 37, 38) are also valid.

Our method relies on somewhat arbitrary criteria to detect
possible changes in physicians’ preferences and estimate
their times. Still, our model yielded RMSEs almost identi-
cal to those of the unrealistic model 4, which was based on
the true occurrence and timing of change for each physi-
cian. As in all simulation studies, we investigated only
a limited range of scenarios and relevant parameter values
(39). Consistent with some empirical findings (13, 14, 32),
we assumed strong prescribing preferences. Weaker pref-
erences would increase the variance of all IV estimates and
reduce their accuracy relative to conventional estimates but
should not markedly alter the relative accuracy of alterna-
tive IV estimates. Indeed, the consistency of results across
the simulated scenarios suggests that our conclusions are
rather robust.
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Both our change-time model and our simulated scenarios
1-12 assume an abrupt switch from a strong preference for
one drug to another drug at a specific point in time. Yet, in
practice, the prescribing preferences may often evolve more
gradually. Still, our change-time estimator outperformed the
2 alternative IVs in both the simulated scenario 13, which
assumed gradual, relatively slow, changes in preferences,
and the real-life atrial fibrillation example. Thus, although
it likely oversimplifies the actual, unknown pattern of
changes, our model may still often improve the accuracy
of IV estimates. In further research, investigators should
develop and validate methods for estimating smooth
changes in individual physicians’ preferences over time.
Similar to what was seen in the work of Cole and Hernan
(36), arbitrary smooth patterns of time-dependent changes
in probability of treatment could be modeled by spline func-
tions (40).

There are no panaceas for addressing the potentially fatal
impact of unobserved confounding on observational studies.
Researchers should use different methods and link their
possibly discrepant results with the underlying assumptions.
The proposed change-time model may add a useful method
to the IV toolbox and help to increase the accuracy of
the estimates and conclusions of pharmacoepidemiologic
studies.
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