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The environment provides points for control of pathogens spread by food, water, hands, air, or fomites. These
environmental transmission pathways require contact network formulations more realistically detailed than those
based on social encounters or physical proximity. As a step toward improved assessment of environmental
interventions, description of contact networks, and better use of environmental specimens to analyze transmission,
an environmental infection transmission system model that describes the dynamics of human interaction with
pathogens in the environment is presented. Its environmental parameters include the pathogen elimination rate,
l, and the rate humans pick up pathogens, q, and deposit them, a. The ratio, qN/l (N equals population size),
indicates whether transmission is density dependent (low ratio), frequency dependent (high ratio), or in between.
Transmission through frequently touched fomites, such as doorknobs, generates frequency-dependent patterns,
while transmission through thoroughly mixed air or infrequently touched fomites generates density-dependent
patterns. The environmental contamination ratio, a /c, reflects total agent deposition per infection and outbreak
probability, where c is defined as the recovery rate. These insights provide theoretical contexts to examine the role
of the environment in pathogen transmission and a framework to interpret environmental data to inform environ-
mental interventions.

communicable diseases; disease transmission, infectious; environmental medicine; environment and public
health; epidemiologic methods; fomites; influenza, human; intervention studies

Abbreviations: EITS, environmental infection transmission system; SIR, susceptible-infectious-recovered.

Human infections that pass from one person to another
commonly do so through environmental media, such as air,
fomites, food, hands, and water. Infection transmission mod-
els for non-vector-borne infections, however, rarely specify
the mode of transmission or the vehicle that carries infection
from one person to another. Instead, most models assume that
the dynamic details of environmental transmission can be
approximated by a point contact process (1–5). With the
exception of sexually transmitted diseases, however, the en-
vironment often plays a major role in transmission, especially
for enteric and respiratory diseases. Moreover, these environ-
mental processes provide important points of intervention. To
promote a transmission system framework that explicitly
accounts for environmental process dynamics, we present
a transmission model with environmental components that

mediate transmission. We call this an environmental infection
transmission system (EITS) model.

A number of approaches have been presented for incorpo-
rating environmental processes of non-vector-borne infec-
tions in transmission models. One approach is to collapse
across environmental dynamics, resulting in a static descrip-
tion of the environment (6). Another approach is to explicitly
formulate environmental pathogen dynamics. This has been
done for water-mediated transmission in deterministic (7–11)
and stochastic (12) formulations, as well as for air- and
fomite-mediated transmission of influenza (13). We both gen-
eralize and abstract these approaches in our EITS framework.

Much of the previous work on defining transmission rates
in this area has focused on the household to define contact
and to estimate transmission probabilities (14–17). Other
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attempts to define contact have relied on conversational en-
counters (3, 18, 19), direct touching (3), or simultaneous
presence in a room (4, 5). Conversational contact is likely
relevant to airborne transmission. Direct touching could
transmit environmentally acquired pathogens. The simulta-
neous presence of both transmission modes could generate
vastly different transmission probabilities in different ven-
ues depending upon environmental conditions, human be-
haviors in those venues, the survival characteristics of the
agent as it transits in air or on fomites, and the dose required
to initiate infection.

By explicitly modeling environmental processes that me-
diate transmission, our EITS models differentiate air, water,
and fomite pathways of transmission (and even different clas-
ses of fomite transmission). We will demonstrate how this
framework provides paths to the following: 1) developing
transmission parameters that can be independently measured
in environmental field studies, including survival rates of
pathogens in the environment, the transfer coefficient from
fomites to hands, and many more; 2) formulating transmis-
sion processes specific for air, water, food, and fomites in
a manner that facilitates assessment of potential environmen-
tal control effects and the interpretation of environmental
pathogen measurements; and 3) developing mechanistic the-
ory on environmentally based transmission rates, analogous
to how vector-borne transmission rates are largely defined by
entomologic factors that are easily measured in the field.

MATERIALS AND METHODS

Model assumptions

We present a basic EITS model with the following
assumptions:

1. All individuals are identical except that one is either S
(completely susceptible), I (infected and infectious), or R
(completely immune).

2. The total population size is constant.

3. The environment is a single, fixed-size, homogeneous
compartment.

4. Humans are the only source of pathogens, and individuals
are uniformly exposed to pathogens in the environment.

5. In the environment, pathogens instantaneously and thor-
oughly mix, and they do not replicate.

6. Once picked up from the environment, pathogens can
instantaneously infect S at a rate that is independent of
prior pathogen pick up.

7. Pathogen levels in the environment diminish via first-
order dynamics through pick up of pathogens by humans,
die off, and environmental decontamination.

EITS deterministic compartmental model

As shown in Figure 1, our EITS deterministic compartmen-
tal model includes 2 types of state entities: 1) humans, which
are divided into S, I, and R states, and 2) live pathogens in the
environment, E. The model is based on the following ordinary
differential equations:

dS
dt ¼ �SqpE

dI
dt ¼ SqpE � cI

dR
dt ¼ cI

dE
dt ¼ aI � E

��
Sþ I þ R

�
qþ u

�
: ð1Þ

q is the fraction of E picked up by each person per unit of
time; p is the probability that a susceptible individual be-
comes infectious per pathogen E picked up; c is the rate per
individual and per unit of time of recovery from and acqui-
sition of immunity to infection; a is the number of patho-
gens per unit of time deposited into the environment by an
infectious individual; and l is the rate at which pathogens
are eliminated from the environment by any means (natu-
rally dying, being killed by decontamination processes, or
being cleaned or otherwise removed from the environment).

We used Berkeley Madonna software (20) to numerically
solve the ordinary differential equations in equation 1.

Stochastic compartmental model

Our EITS stochastic model is Markovian. All state enti-
ties and transmission rates are defined similarly to those in
the EITS deterministic compartmental model. One differ-
ence is that the state variables (S, I, R, E ) are discrete in-
tegers in the stochastic model rather than continuous as in
the deterministic compartmental model. Our stochastic
models allow for only a single event to occur at any given
time; the specific event is randomly determined by the tran-
sition rates (Table 1). In deterministic compartmental mod-
els, on the other hand, events happen continuously and
simultaneously. The outputs of these 2 model structures
converge as the initial numbers of infected individuals and
environmental pathogens are large. As these initial values
decrease, the chance of stochastic die out increases. This
phenomenon does not occur in a deterministic model.

The Gillespie algorithm (21) is applied to simulate the
stochastic transmission process and to randomly execute
a single event at various time steps on a continuous time
scale. This model was coded and run in JAVA software (Sun
Microsystems, Inc., Santa Clara, California).

Figure 1. A schematic representation of flow of individual (solid lines)
among states and flow of pathogens in the environment (dotted lines)
for the environmental infection transmission system (EITS) model.
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Choice of parameter values

To illustrate the behavior of the EITS, we chose to pa-
rameterize our model for influenza (Table 2) such that the
environment corresponds to 1) frequently touched fomites,
such as a door handle, that are touched by many different
individuals; 2) infrequently touched fomites, such as floors
or ledges; or 3) air inside a building. Any real situation
might incorporate all 3 of these pathways simultaneously.
We isolated these 3 conditions for the sake of clarifying the
dynamics related to each condition separately. The popula-
tion size, N (N ¼ S þ I þ R), represents the number of
people in a public indoor venue. We used a point estimate
for the recovery rate derived from previous influenza models
(22, 23). Except for the recovery rate, c, all parameters vary
by route of transmission. Infectivity, p, differs between air
and fomite because the different routes of infection, inhala-
tion for air and touched membrane for fomites, have different
dose-response characteristics as illustrated from empirical
studies (24–26). Estimates on environmental elimination
rates, l, are based on experimental studies in air (27) and
on nonporous surfaces (28). Considering the particle size
distribution of excretions, only the smaller particles stay sus-
pended in air and are respirable, whereas larger particles
rapidly settle onto surfaces where they may be picked up;
thus, there is a route-specific deposit rate, a, for each path-
way. We assume that frequently touched fomites have smaller
surface areas than infrequently touched fomites and, there-
fore, receive proportionally less contamination. The deposit
rate is governed by physical and behavioral factors, such as

sneezing or cough rates and deposition and aerosolization
fractions, among others that are derived from a variety of
empirical studies (29–35). Analogously, the pick-up rate, q,
is governed by physical and behavioral factors, such as
breathing, touching rates, and transfer efficiencies among
surfaces, hands, and membranes (36–41). In order to compare
across the 3 scenarios, we parameterized the scenarios to
have the same R0. For more parameterization details, refer
to the Web-only supplement accompanying this paper. (This
information is posted on the Journal’s website (http://aje.
oxfordjournals.org/).)

RESULTS

Mathematical analysis of EITS model structure and
behavior

In the EITS model, pathogens are picked up by humans at
a rate, qN, and eliminated from the environment at a rate, l.
The fraction of live environmental pathogens picked up by
humans, therefore, is

fE ¼ qN
qN þ l

: ð2Þ

This fraction ranges from near zero when elimination is
much larger than the pick up to near 1 if the pick up is much
larger than elimination. Another important metric is the
average time pathogens persist in the environment, tE:

Table 2. Parameter Values for an Influenza EITS Model Based on Data From the Literature

Parameter

Parameter Estimates

Notesa

Air
Frequently

Touched Fomite
Infrequently

Touched Fomite

Recovery rate, 1/day (c) 0.2 0.2 0.2 Based on empirical probability distribution.

Infectivity (p) 0.0517 0.0000693 0.0000693 Based on exponential dose-response model.
Route of transmission: air ¼ inhalation;
fomite ¼ membrane.

Elimination rate, 1/day (l) 8.64 2.88 2.88 Loss in air comes from deaths, and loss on
fomites reflects loss on nonporous surfaces.

Deposit rate,
pathogens/infected/day (a)

693 5,244 1,040,177 Contamination based on cough and sneezing
rates. Deposition is based on size distribution
from sneezing, where preevaporative particles
with a diameter of <20 lm are assumed to
remain in air.

Pick up, 1/person/day (q) 0.0000877 0.297 0.0000145 Based on breathing rates and touching rates.
Exposure duration is assumed to be 8 hours/day.

Abbreviation: EITS, environmental infection transmission system.
a References for model parameterization are in the Web-only supplement (http://aje.oxfordjournals.org/).

Table 1. Event and Transition Rates for the EITS Stochastic Model

Event Result Transition Rate

Infection (S, I, R, E) / (S – 1, I þ 1, R, E ) S 3 q 3 E 3 p

Removal (S, I, R, E) / (S, I – 1, R þ 1, E ) I 3 c

Depositing (S, I, R, E) / (S, I, R, E þ 1) I 3 a

Pathogen decrease (S, I, R, E) / (S, I, R, E – 1) E 3 (q 3 (S þ I þ R) þ l)

Abbreviation: EITS, environmental infection transmission system.
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tE ¼ 1

qN þ l
: ð3Þ

For our 3 environmental transmission pathways (air, fre-
quently touched fomites, infrequently touched fomites), the
parameter values defined in Table 2 generate fractions of live
environmental pathogens picked up by humans of 0.01%,
99.04%, and 0.50%, respectively. They generate average per-
sistence times of 0.115, 0.003, and 0.345 days (Table 3).
These values reflect the fact that frequently touched fomites
are picked up at a high rate and, therefore, have a low envi-
ronmental persistence time compared with infrequently
touched fomites. Air is more similar to infrequently touched
fomites with respect to persistence and fractional pick up.
The specific relation between these 2 transmission routes
depends on pathogen- and environment-specific factors.

The basic reproductive number, R0, represents the ex-
pected number of secondary cases caused by introducing
a single primary case into a totally susceptible population.
As shown in the Web supplement, R0 can be written as
follows:

a
c
3

qN
qN þ l

3 p: ð4Þ

R0 can be considered as the product of 1) total pathogens
deposited by an infectious individual during his/her conta-
gious period, a

c; 2) the proportion of pathogens picked up
while still alive, qN

qNþl; and 3) the infectivity of pathogens, p.
Based on the parameter values presented in Table 2,
R0 ¼ 1.8 for the 3 model scenarios.

When the total pickup rate is much larger than the elimina-
tion rate (qN >> l), R0 approaches a3 p

c and is independent
of population size, N. This results in a frequency-dependent
mass action formulation and corresponds to a frequently
touched fomite, such as a door handle or a frequently used
workspace. When the total pick-up rate is much smaller than
the elimination rate (qN << l), R0 approaches a3 qN

l 3 p
c

and is proportional to the population size, N. This corresponds
to a density-dependent mass action formulation, such as either
1) airborne transmission with rapid, thorough mixing of air

or 2) surface contamination where individuals infre-
quently touch the surface and the majority of agents die
or are disinfected before the next person touches it. This
density-dependent formulation is similar to the case ad-
dressed by Noakes et al. (6) in an airborne transmission
model. Therefore, according to the ratio, qN/l, the EITS
model can characterize airborne- or fomite-mediated
transmission and, within fomite-mediated transmission,
either frequently or nonfrequently touched surfaces. Mul-
tiple pathways can also be modeled, each with unique
parameterizations.

By rearranging equation 4, we get

R0 ¼ p3

�
a
c

�
3

 
qN
l

qN
l þ 1

!
: ð5Þ

This reformulation of R0 brings out 2 important ratios:
(qN)/l, the environmental persistence ratio, an indicator of
the importance of pick up compared with environmental
elimination pathogens from the environment; and a/c, the
contamination ratio, a measure of the pathogen deposition
magnitude from an infectious individual. The condition,
qN/l > > 1, corresponds to frequently touched fomites.
Under this condition, environmental contamination, a/c, is
more likely to be picked up than to die off. The condition,
qN/l < < 1, corresponds to infrequently touched fomites.
Under this condition, environmental processes attenuate
pathogen levels before humans are exposed.

These frequency- and density-dependent relations can
also be appreciated by transforming our EITS model into
an instantaneous contact model corresponding to the clas-
sic Kermack-McKendrick susceptible-infectious-recovered
(SIR) model (42). To this end, we assume that the dynamics
of E can be ignored, such that dE/dt ¼ 0. Under these
conditions:

E ¼ aI
ðSþ I þ RÞqþ l

:

Substituting E into equation 1, we have

dS
dt ¼ � apq

qNþlSI

dI
dt ¼

apq
qNþlSI � cI

dR
dt ¼ cI

; ð6Þ

where the term apq
qNþl is equivalent to the single transmission

rate parameter in the classic SIR model. The R0 of this in-
stantaneous contact SIR model is

R0 ¼ N

�
apq

qN þ l

��
1

c

�
: ð7Þ

This is the same as that derived previously from our EITS
model with environmental dynamics. The Kermack-
McKendrick SIR model is formulated as density-dependent
contact, and its R0 is proportional to the population size. As
in the EITS model, the formulation of this instantaneous
contact SIR model can be considered as either density- or

Table 3. Initial Conditions and Basic Statistics for the EITS Models

Parameter Airborne
Frequently
Touched
Fomite

Infrequently
Touched
Fomite

Total population (N) 1,000 1,000 1,000

Initial S (S0) 999 999 999

Initial I (I0) 1 1 1

Initial R (R0) 0 0 0

Initial E (E0) 0 0 0

Basic reproductive
number (R0)

1.80 1.80 1.80

Environmental persistence
time (tE)

0.115 0.003 0.345

Fraction of pick up from
the environment (fE)

0.010 0.990 0.005

Abbreviation: EITS, environmental infection transmission system.
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frequency-dependent contact on the basis of the environ-
mental persistence ratio, qN/l.

Analyses of dynamics of the EITS model

Figure 2 compares the influenza dynamics for the 3 EITS
model scenarios (air, frequently touched fomites, and infre-
quently touched fomites) with the SIR model configuration
shown in equation 6. The final cumulative incidence is sim-
ilar for all 3 EITS transmission pathways and the SIR con-
figuration, reflecting that they were all parameterized to
have the same R0 (Figure 2A). The SIR configuration dy-
namics are the fastest, although frequently touched fomite
transmission exhibits similar dynamics. Air transmission
dynamics are slower, and the infrequently touched fomite
transmission is even slower.

These dynamic differences are reflected in the different
environmental persistence times, 1

qNþl, for the 3 EITS model
scenarios. Environmental persistence time is greatest for the
infrequently touched fomites and, therefore, their time to
peak infection prevalence is longer than for the other scenar-
ios (Figure 2B). On the other hand, the pathogen environmen-
tal persistence time is short in the case of the frequently
touched fomites, so their time to peak infection prevalence
is the shortest.

The specific timing and dynamics will vary by the specific
parameterization. For example, decreasing the pick-up rate
and the elimination rate by the same fraction (qN/l remains
constant) results in slower dynamics, lower peak prevalence,
and unchanged final cumulative incidence. However, the
general features of the EITS model are that 1) environmen-
tal pathogen dynamics will slow the epidemic curve, 2)
environmental transmission will attenuate peak incidence
and prevalence, and 3) different routes of environmental
transmission will exhibit different dynamics.

Intervention effects in the EITS deterministic
compartment model

To gain insights into environmental infection control dy-
namics, we assess 2 types of interventions. The first affects
the elimination rate parameter, l, which corresponds to en-
vironmental decontamination. The second affects the path-
ogen pick-up rate parameter, q. The pick-up rate, q, has no
simple intervention analog but could be thought of as a be-
havioral change that decreases environmental contact, an
altered transfer efficiency, or a dilution of the environmental
surface area to be touched. To illustrate intervention effec-
tiveness in different scenarios and how interventions impact
dynamics and risk, we examine 2 simple scenarios: 1) in-
creasing the elimination rate, l, by 25%; and 2) reducing the
pathogen pick-up rate, q, by 25%. As shown in Figure 3,
both interventions have little effect on the dynamics of epi-
demics for the frequently touched fomite scenario. Fre-
quently touched objects, such as doorknob handles, have
a high pick-up rate, so that a small increase in the elimina-
tion rate or a decrease in the pick-up rate will have very little
impact on transmission. This can also be explained by not-
ing that R0 for frequently touched fomites is approximately
independent of both the elimination and pick-up rates. For

the air and the infrequently touched fomite scenarios, how-
ever, these 2 interventions can lead to lower cumulative in-
cidence, slower dynamics, and a smaller peak of live
pathogens in the environment. Although reducing pathogen
pick up is more effective than environmental decontamina-
tion, the efforts required by these 2 interventions will affect
the choice of intervention. The reason why these 2 interven-
tions are effective for air and infrequently touched fomites is
that the elimination rate and pick-up rate are approximately
proportional to R0 in these 2 scenarios.

Stochastic model analyses

The EITS stochastic model was first analyzed to explore
how an environmental contamination event affects the prob-
ability of an outbreak. To this end, we varied the initial level
of environmental contamination to assess its impact on the
probability of an outbreak’s occurring, defined as the pro-
portion of simulations that resulted in attack rates of >0.05
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Figure 2. Cumulative incidence (A) and prevalence (B) using the
environmental infection transmission system (EITS) deterministic
compartmental model. EITS model scenarios include transmission
through infrequently touched fomite (dashed line), air (dotted line),
and frequently touched fomite (solid line with square). Corresponding
instantaneous contact susceptible-infectious-recovered (SIR) model
(solid line with triangle) is shown for comparison, which has similar
dynamics to the EITS frequently touched fomite scenario. R0 ¼ 1.8,
and simulations are seeded with 1 infectious individual. Parameter
values are shown in Table 2.
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(simulation details are defined in Figure 4). The relation
between the outbreak probability and E(t¼0) is sigmoidal;
that is, above a threshold contamination level, there is a re-
gion in which the probability of an epidemic increases ex-
ponentially with E(t¼0). At higher initial contamination
levels, the probability of an outbreak levels off. Using the
probability of outbreak as an additional risk measure in
microbial risk assessments may be an important comple-

ment to the currently used measures that generally rely on
mean values.

We also explored the influences of human contamination,
through shedding from infectious individuals, on the dynam-
ics of epidemics (simulation details defined in Figure 5). An
infectious individual sheds, on average, ac pathogens into the
environment during his/her contagious period. As shown in
Figure 5, when fixing R0 and the initial conditions, increas-
ing the contamination ratio, a

c, results in an increase in the
probability of an outbreak. The relation in Figure 5 holds for
any proportional change in the elimination rate, pick-up
rate, and infectivity parameter values where R0 remains
constant, suggesting that, as long as R0 is constant, these 3
parameters do not have significant influence on the proba-
bility of an outbreak. The reason that the contamination
ratio can affect the probability of an outbreak, even when
R0 is constant, is that, when infectious individuals excrete
fewer pathogens into the environment, reflected by a small
contamination ratio, ac, this smaller number of environmental
pathogens has a higher chance of extinction, preventing the
initiation of an outbreak.

The results shown in Figures 4 and 5 also hold for both
the infrequently touched fomite and air scenarios (data not
shown).

DISCUSSION

Commonly, the mechanisms of transmission through the
environment are not explicitly formulated in non-vector-
borne infectious disease population dynamic models, except
for some models that focus on enclosed hospital settings
(31) or water-borne outbreaks (7–12). In this paper, we
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Figure 3. Comparing the effectiveness of environmental decontam-
ination (dotted line), decreasing environment contact (dashed line),
and no intervention (solid line) by using the environmental infection
transmission system (EITS) deterministic compartmental model for air
(A), frequently touched fomite (B), and infrequently touched fomite (C)
scenarios. Parameter values for the ‘‘no intervention’’ scenario are
shown in Table 2. Environmental decontamination corresponds to
increasing the elimination rate by 25%. Decreasing environmental
contact corresponds to decreasing the pick-up rate by 25%.
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Figure 4. Probability of an outbreak for different initial environmental
contamination levels by using the environmental infection transmis-
sion system (EITS) stochastic model and the frequently touched fo-
mite scenario. Simulations use the parameter sets for the frequently
touched fomite scenario shown in Table 2. Initial conditions are I0 ¼ 0,
E0 ¼ (1, 10, 26, 262, 2,622, 26,220, 52,440, 131,100, 262,200,
2,622,000).
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present a basic conceptual framework of environmentally me-
diated population infection transmission for non-vector-borne
infectious diseases by incorporating environmental mecha-
nisms into epidemic models.

By use of the EITS framework presented here, the trans-
mission rate and R0 are formulated by well-defined and
measurable environmental factors, similar to how vector-
borne transmission is formulated by using entomologic fac-
tors. Although we focus on air and fomite transmission,
a potential generalization of this framework would be in-
corporating pathogen dynamics within different environ-
mental settings, such as other vectors, food, and water.

The adoption of an EITS framework provides a theoretical
basis for understanding and modeling intervention efficacy
in realistically detailed situations involving diverse venues
where transmission takes place. The parameters of the EITS
model reflect physical events on which data can be readily
gathered by using newly developed methodologies and for
which a considerable body of data and theory already exists.
In contrast, contact rates and transmission probabilities in
specific venues are abstract and not feasibly measurable in
most situations, except in uniform places with repeated and
prolonged contact, such as households.

The EITS framework also helps to identify and relax un-
realistic mass action assumptions, such as no time passing
between pathogens leaving one person and reaching an-
other. It also provides a way to conceptualize the extent to
which transmission is a density- or frequency-dependent
contact process (1, 2). In reality, most transmissions occur
between these 2 extremes, and the EITS formulation reflects
this. As the environmental persistence ratio, qN/l, in-
creases, transmission becomes more density dependent

and, as this ratio decreases, it becomes more frequency
dependent.

Another theoretically valuable focus is found in the con-
tamination ratio, a/c, a measure of the total amount of
pathogens shed by infectious individuals. This ratio and
the magnitude of a contamination event are both indicators
of the probability that an outbreak will occur, suggesting
that stochastic ‘‘die out’’ is more likely when environmental
contamination is low.

EITS models will eventually help us to define the role of
different transmission modes in sustaining or amplifying
transmission. Multiple transmission modes have been recog-
nized for many other infections than those in our example,
such as cholera, hepatitis A, and cryptosporidiosis (43–45).
The EITS model framework provides leverage for using
detailed environmental data and well-established parame-
ters reflecting pathogen characteristics to analyze different
transmission modes and the role they play in endemic and
epidemic situations.

Although including more realistic details than classic SIR
models, the EITS models presented here are abstract in
order to serve heuristic purposes. Future EITS models will
relax current model assumptions. The specific choices of
which assumptions to relax will depend on the research
question. For example, with only a single environmental
compartment, our models may not accurately capture con-
tact patterns or pathogen dynamics in the environment. In
fact, our preliminary analysis pointed out that a key way to
relax the homogeneous environment assumption is to dis-
tinguish frequently touched fomites from infrequently
touched fomites. Additionally, a more refined understanding
of transmission patterns might require model structure that
accounts for detailed contact patterns between people and
the environment.

Our simple EITS models identify key elements and im-
portant data gaps of the environmental infection transmis-
sion system. They provide an initial step in motivating
improved environmental measurements that would comple-
ment human case data and might be more informative and
more cost-effective to gather than such data. EITS models
incorporating more realistic details than those presented
here can be used to help design future environmental data
collection efforts. They also can provide a basis for analyz-
ing focused environmentally based interventions, such as
decontamination of specific surfaces, water, or air, as well
as hygiene and sanitation efforts.
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