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Instrumental variable analyses are increasingly used in epidemiologic studies. For dichotomous exposures and
outcomes, the typical 2-stage least squares approach produces risk difference estimates rather than relative risk
estimates and is criticized for assuming normally distributed errors. Using 2 example drug safety studies evaluated
in 3 cohorts from Pennsylvania (1994–2003) and British Columbia, Canada (1996–2004), the authors compared
instrumental variable techniques that yield relative risk and risk difference estimates and that are appropriate for
dichotomous exposures and outcomes. Methods considered include probit structural equation models, 2-stage
logistic models, and generalized method of moments estimators. Employing these methods, in the first study the
authors observed relative risks ranging from 0.41 to 0.58 and risk differences ranging from �1.41 per 100 to �1.28
per 100; in the second, they observed relative risks of 1.38–2.07 and risk differences of 7.53–8.94; and in the third,
they observed relative risks of 1.45–1.59 and risk differences of 3.88–4.84. The 2-stage logistic models showed
standard errors up to 40% larger than those of the instrumental variable probit model. Generalized method of
moments estimation produced substantially the same results as the 2-stage logistic method. Few substantive
differences among the methods were observed, despite their reliance on distinct assumptions.

antipsychotic agents; confounding factors (epidemiology); instrumental variable; pharmacoepidemiology

Abbreviations: APM, antipsychotic medication; COX-2, cyclooxygenase 2; GMM, generalized method of moments; NSAID, non-
steroidal antiinflammatory drug; PACE, Pharmaceutical Assistance Contract for the Elderly.

Instrumental variable analysis is a technique for the con-
trol of unmeasured confounding in nonrandomized data,
which is becoming more common in epidemiology and
health services research (1–5). The technique rests on the
idea that an instrument—a variable that is related to treatment
but neither directly nor indirectly related to outcome, except
through the effect of the treatment itself—can be identified in
observed data and then, in the simplest case, substituted for
actual exposure (6, 7). If such a variable can be found one can
estimate or place bounds on the causal effect of treatment,
provided that all necessary assumptions are met (8).

The most commonly used technique for instrumental var-
iable analysis is the 2-stage least squares method (6, 9). In
the setting of dichotomous exposures and outcomes, 2-stage
least squares produces a risk difference estimate but a rela-

tive measure of effect may be desired. Further, there is a sta-
tistical issue of fitting dichotomous outcomes and exposures
with the 2-stage least squares approach: 2-stage least squares
relies on linear models, which can lead to model misspeci-
fication when predicting dichotomous exposure or outcome
as a function of many covariates (10). This misspecification
can yield predicted values of treatment or exposure outside
the 0–1 range, as well as inconsistent estimates of treatment
effect.

In this paper, we review a range of instrumental variable
methods that one can use for dichotomous treatments and
outcomes, including ‘‘2-stage’’ estimation techniques based
on linear and probit models, a 3-stage estimator, and a gen-
eralized method of moments (GMM) approach. We empir-
ically compare the performance of the methods in
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a reanalysis of data from 3 published pharmacoepidemio-
logic studies (2, 3, 11). In each example, the physician pre-
scribing preference instrument is used to determine the
safety of medications. We consider the risk of severe gas-
trointestinal complications among users of nonsteroidal
antiinflammatory drugs (NSAIDs) in 1 cohort, and in 2 other
cohorts we consider the risk of mortality related to use of
antipsychotic medications (APMs).

MATERIALS AND METHODS

Instrumental variable methods

Instrumental variable estimators can be formally defined
in a number of ways. Informally, an instrument is an ob-
served variable Z that predicts treatment X but is unassoci-
ated with outcome Y , either directly or indirectly through
unmeasured confounders U, except via the effect of treat-
ment (3, 6, 8, 12). In the presence of measured confounders
C, these assumptions are generally assumed to hold within
strata of the covariates. Alternatively, Pearl (13) approaches
instrumental variables using graphical techniques.

While this simple definition provides a basis for thinking
about instrumental variables, it is not necessarily universal
across all instrumental variable approaches; in particular,
the implied assumption of no treatment effect heterogeneity
varies (14). Below we outline a series of methods for in-
strumental variable analysis along with their respective as-
sumptions. In all cases, we simplify the discussion by
assuming no treatment effect heterogeneity, though ap-
proaches to dealing with heterogeneity do exist (7). The
techniques we used for estimation in our example studies
are described following the analytic approaches.

Structural equation models

Instrumental variable estimators as used in economics
have been specified as systems of simultaneous equations,
often termed structural equation models. Typically, the first
equation models the treatment assignment mechanism: It
predicts treatment as a function of observed confounders
and variables that are related to the treatment but unrelated
to the outcome (i.e., instruments). The second equation is
a model for the outcome that includes the treatment and the
observed confounders.

Linear structural equation models and 2-stage least
squares

The most common of these structural equation ap-
proaches involves 2 simultaneous linear models. As before,
let X be treatment, Y be outcome, C be 1 or more measured
confounders, and Z be the instrument. Let ai and bi be co-
efficients and e1 and e2 be errors:

X ¼ a0 þ a1Z þ a2C þ e1: ð1Þ

Y ¼ b0 þ b1X þ b2C þ e2: ð2Þ

In this model, e1 and e2 are often assumed to have a bivariate
normal distribution, an extension of the assumption of nor-
mally distributed error for a single linear model. In the
presence of unmeasured factors related to both treatment
and outcome, the correlation between e1 and e2 will be non-
zero. In this case, X will be correlated with e2 such that
ordinary least squares estimation of b1 (often intended to
be interpretable as a causal risk difference) will be biased
because of an association between X and Y via unmeasured
risk factors U.

However, if Z is uncorrelated with U after control for C,
then b1 can be consistently estimated using 2-stage least
squares. This procedure works by sequential application of
2 ordinary least squares regressions in which predicted val-
ues of treatment X from the first stage are entered into the
second stage as a replacement for actual treatment. By re-
placing the confounded treatment variable with an uncon-
founded prediction of treatment, the bias due to unmeasured
confounding can be avoided (6, 12). Note that 2-stage least
squares is a method of moments approach (discussed below)
that, unlike maximum likelihood estimation, does not make
distributional assumptions about the error terms.

Two-stage least squares estimation may be problematic in
the context of dichotomous exposures and outcomes. The
linear models of treatment and outcome may produce pre-
dicted values outside of the 0–1 range; plus, with dichoto-
mous outcomes, the assumption of a bivariate normal
distribution of errors will be violated. However, it has been
suggested that these are theoretical rather than practical
problems and that 2-stage least squares estimates are un-
biased, though their standard errors are possibly incorrect
(10, 15). One alternative, the use of a generalized linear
model with an identity link and binomially distributed er-
rors, can fail to fit (16).

A more fundamental issue is that 2-stage least squares is
based on an additive model even in instances where a mul-
tiplicative model may be more appropriate. Several alterna-
tive models for dichotomous exposures and outcomes have
been proposed, most of them estimating relative measures of
risk (odds ratios, risk ratios) rather than absolute measures
like 2-stage least squares’ estimate of risk difference.

Probit structural equation models

Economists frequently use probit structural models in
places where 2-stage least squares may not be suited to
the question at hand (6, 12). Unlike ordinary least squares
and 2-stage least squares, probit models explicitly model
probabilities and, as such, constrain the predicted values
of treatment and outcome to the 0–1 range.

The specification of a system of probit equations is given
by

X ¼ I½ða0 þ a1Z þ a2CÞ > e1�: ð3Þ

Y ¼ I½ðb0 þ b1X þ b2CÞ > e2�: ð4Þ

e1 and e2 are thresholds that are assumed to have a bivariate
normal distribution. I(x) is the indicator function, returning
0 if the condition is not met and 1 if it is.
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Unlike logistic models in which the bi’s are interpretable as
logarithms of odds ratios, the bi’s in probit models have no
such natural interpretation. However, it has been shown that by
multiplying a probit coefficient by approximately 1.6, probit
coefficients can be made to approximate logistic coefficients
(17, 18).

2-stage logistic model

If one wants to use instrumental variables to estimate
odds ratios in a study with dichotomous treatment and out-
come, a natural choice might be to create 2 sequential lo-
gistic regressions in a manner parallel to 2-stage least
squares. Using maximum likelihood estimation, the first
stage would predict treatment as a function of an instrument
and covariates, and the second stage would predict outcome
based on the first stage’s predicted treatment and the covar-
iates. Such an approach is problematic, however, as the first-
stage logistic model must be specified correctly in order for
the second stage to be unbiased (10); further, to our knowl-
edge there is no definition for a bivariate logistic distribution
of errors. Therefore, even with a valid instrumental variable,
the 2-stage logistic approach is not guaranteed to yield un-
biased estimates (19, 20). In practice, this bias may be small;
the technique has been successfully employed for the
closely related problem of measurement error correction
(19, 21).

3-stage model

If one is concerned with misspecification of the first stage
and interested in an estimate of risk difference, then replac-
ing the 2-stage least squares method’s first ordinary least
squares model with a logistic model may be reasonable.
However, Angrist (10) cautions against this: As above, if the
first-stage logistic model is incorrect, the resulting second-
stage estimates will be inconsistent, whereas 2-stage
least squares can be consistent even with first-stage misspe-
cification. As a solution, Angrist demonstrated a 3-stage
approach: A logistic model is used as a precursor to 2-stage
least squares; the continuous probability value predicted by
the logistic estimation is used as the instrument in 2-stage
least squares estimation.

GMM instrumental variable approaches

Instrumental variable estimators can also be constructed
by making assumptions about the moments of the error term
in a regression model (15); 2-stage least squares is a specific
example of this approach. These moment assumptions are
expressed as equations whose solution yields an estimate of
the treatment effect and of the other parameters in the
model. Depending on the assumptions expressed, the equa-
tions may be solvable in closed form, as with 2-stage least
squares, or may need to be solved with iterative techniques.
Since these so-called GMM estimators rely on moment as-
sumptions rather than the distributional assumptions of
maximum likelihood, they may in certain cases be more
robust and less sensitive to parametric requirements, though
possibly also less efficient.

As an example, suppose that one is interested in estimat-
ing a usual mean-model regression:

Y ¼ lðX;C; bÞ þ e: ð5Þ

In this framework, lðX;C; bÞ could be any function, but we
will use the logit:

lðX;C; bÞ ¼ 1

1 þ eb0þb1Xþb2C
: ð6Þ

Imposing the structure of the instrumental variable frame-
work yields the following moment assumptions. First, we
must express the fact that, as in any mean model, the resid-
uals should sum to 0:

0 ¼ 1
n

P
½Yi � lðXiÞ�

¼ 1
n

Ph
Yi � 1

1 þ eb0þb1Xþb2C

i
: ð7Þ

Second, the errors must be uncorrelated with the confounders:

0 ¼ 1
n

P
fC½Yi � lðXiÞ�g

¼ 1
n

Pn
C
h
Yi � 1

1 þ eb0þb1Xþb2C

io
:

ð8Þ

Finally, the errors must be uncorrelated with the instrument:

0 ¼ 1
n

P
fZ½Yi � lðXiÞ�g

¼ 1
n

Pn
Z
h
Yi � 1

1 þ eb0þb1Xþb2C

io
:

ð9Þ

Using iterative techniques like the Newton-Raphson
method, one can solve for the combination of bi’s that will
yield a 0 for each of equations 7–9. In our example, b0 and
b2 are nuisance parameters, but the estimate of b1 will be an
estimate of the causal log odds ratio of interest.

Calculating risk differences from nonlinear models

If one considers linear models for risk differences esti-
mated by ordinary least squares to be undesirable in the
setting of dichotomous outcomes, an alternative approach
is available. We used marginal-effects models to calculate
risk differences from probit and logistic models. (Note that
the term ‘‘marginal effect’’ as used here refers to ‘‘change
in the slope of the probability function’’ rather than ‘‘effect
on the marginal patient’’.) With marginal effects models,
investigators look at the underlying cumulative density
function and use the derivatives at a chosen point (or av-
erage of the derivatives at a number of points) to estimate
a risk difference. See the Appendix for details on this
approach.

Estimation of risk differences and relative risks

We considered various modeling approaches in our analy-
sis, starting with 2-stage least squares and its estimate of
a risk difference. For other estimates of risk difference, we
considered a logistic first stage with an ordinary least
squares second stage and an instrumental variable probit
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marginal effects model evaluated both at the mean of all
covariates and averaged over all observations (6). With re-
gard to relative risks and odds ratios, we considered 2-stage
logistic models, a GMM instrumental variable logistic
model, and an instrumental variable probit model.

For the probit/probit model, we wished to report odds
ratios, so we used the scaling factor proposed by Amemiya
et al. and others (16–18) to transform the coefficients of the
probit regression into coefficients that would approximate
the log odds ratio coefficients of a logistic regression. Be-
cause this is an ad hoc approach (though with theoretical
roots), we calculated several values of the scaling factor,
ranging from 1.4 to 1.8, including Amemiya et al.’s sug-
gested value of 1.6. We also used an empirically derived
transformation figure calculated as the ratio of the unad-
justed probit effect to the unadjusted logistic effect (log
odds ratio).

These combinations were chosen on the basis of past
practice (1–3) and discussion in the literature (8, 10, 22, 23).

For the GMM models, we implemented an estimation
procedure based on the estimator defining equations 7–9
above. The GMM approach has been implemented in sev-
eral other instances (15, 24).

For reference, we also fitted each model’s non-instrumental–
variable analog: crude and adjusted ordinary least squares,
logistic, and probit models. All analyses were carried out
using Stata, version 9 (25, 26), with the exception of the
GMM models, for which analyses were carried out in R
(27). R programming code is available from the correspond-
ing author (J. A. R.).

We bootstrapped standard errors for all models for which
there were not analytic standard error estimates (28). We
used cluster sampling and conducted 1,000 iterations.

Physician prescribing preference as an instrumental
variable

We used physician prescribing preference as the instrumen-
tal variable for use in studies comparing 2 treatment regimens.

Table 1. Characteristics of 3 Cohorts of Adults Aged 65 Years or Older, by Type of Treatment Received, Pennsylvania (1994–2003) and British

Columbia, Canada (1996–2004)

Treatment

Pennsylvania
British Columbia APM Cohort

COX-2 Inhibitor Cohort APM Cohort

COX-2
Inhibitor

Nonselective
NSAID

Conventional
APM Treatment

Cohort Atypical
APM Treatment

Conventional
APM Treatment

Atypical APM
Treatment

No. or
Mean

%
No. or
Mean

%
No. or
Mean

%
No. or
Mean

%
No. or
Mean

%
No. or
Mean

%

No. of patients 32,074 17,637 8,056 12,031 12,756 23,785

Mean age, years 79.75 77.79 83.30 83.58 79.89 80.32

Male sex 14.1 18.9 20.1 15.1 39.7 35.1

Medical history

Cerebrovascular disease —a — 28.3 30.2 10.8 9.9

Congestive heart failure 30.3 24.6 31.8 30.4 8.4 6.0

Myocardial infarction 1.84 1.64 3.4 3.3 2.7 2.3

Ischemic heart disease — — 28.3 23.8 3.8 2.7

Other cardiovascular disease 16.4 14.8 55.4 57.7 20.2 16.6

Hypertension 72.8 70.1 57.2 64.2 22.3 24.1

Osteoarthritis 48.5 33.4 — — — —

Rheumatoid arthritis 5.0 2.7 — — — —

Diabetes mellitus — — 25.5 26.3 15.0 13.8

Warfarin use 13.3 6.5 — — — —

Corticosteroid use 8.7 7.8 — — — —

Delirium — — 11.7 15.2 7.4 8.4

Mood disorders — — 21.8 35.5 15.6 25.3

Psychotic disorders — — 21.7 24.4 11.2 16.7

Other psychiatric disorders — — 5.7 7.9 3.1 4.5

Nursing home stay 7.6 7.1 15.5 20.2 31.0 26.8

No. of generic drugsb 7.82 6.65 6.65 7.82 7.36 7.34

Abbreviations: APM, antipsychotic medication; COX-2, cyclooxygenase 2; NSAID, nonsteroidal antiinflammatory drug.
a Variable was not measured in this cohort.
b Number of generic drugs for which the participant had filled a pharmacy prescription in the previous 180 days.
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Physician prescribing preference, as proposed by Brookhart
et al. (3), posits that a doctor’s prescribing decision depends
on both characteristics of the patient at hand and the physi-
cian’s preference for a specific drug or class of drugs. Her
preference should be largely independent of patient character-
istics and outcome and may therefore serve as an instrumental
variable (and, as such, a predictor of treatment among mar-
ginal patients), given that certain assumptions are fulfilled (8).

Because true preference is unmeasured, we used a simple
binary surrogate measure of preference Z: the treatment
given by the doctor to the patient she saw most recently
prior to the current patient and who received either of the
study treatments (3, 4).

Zi ¼ Xi�1; i > 1: ð10Þ

Example study 1: NSAID initiation and risk of severe
gastrointestinal complications

We performed a study of initiation of NSAID therapy
and its relation to severe gastrointestinal complications (4).
A dichotomous exposure variable was coded by class of
NSAID; nonselective NSAIDs (ibuprofen, naproxen, diclo-
fenac) were the referent category, and they were compared
with cyclooxygenase 2 (COX-2) inhibitors (celecoxib, rofe-
coxib, valdecoxib). Outcome was defined as the cumulative
risk of a gastrointestinal complication (hospitalization for
gastrointestinal hemorrhage or peptic ulcer disease, or
a medical insurance claim for associated services) within
180 days of treatment initiation. The study was performed
in the Pennsylvania population described below.

Example study 2: APM initiation and risk of short-term
mortality

As a second example, we performed a study of initiation
of APMs and the associated risk of short-term mortality
(29). APMs are categorized into 2 groups: conventional
(older) agents and atypical (newer) agents (30). Previous
studies have raised the question of increased death rates
among users of atypical antipsychotic agents as compared
with placebo (31–33). Outcome was defined as the cumula-
tive risk of death from any cause within 180 days of treat-
ment initiation. The study was performed separately in the
British Columbia and Pennsylvania populations described
below.

Cohorts of patients

We drew 3 study cohorts from the 2 populations (British
Columbia and Pennsylvania). Our study populations each
comprised patients aged 65 years or older who initiated
treatment with the study drugs. For the COX-2 inhibitor
study and the Pennsylvania APM study, we drew cohorts
from Pennsylvania’s Pharmaceutical Assistance Contract
for the Elderly (PACE) program, a drug assistance program
for the state’s low-income seniors (2, 3). We received claims
from 1994–2003 for those PACE participants also en-
rolled in Medicare. For the APM study, we separately drew

Figure 1. Probability of receiving treatment as predicted by a first-
stage ordinary least squares model. Most probabilities fell within the
acceptable 0–1 range. (A) Pennsylvania cyclooxygenase 2 (COX-2) in-
hibitor cohort (1994–2003); (B) Pennsylvania antipsychotic medication
(APM) cohort; (C) British Columbia, Canada, APM cohort (1996–2004).
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a cohort of patients from all residents of British Columbia,
Canada, aged �65 years who initiated therapy between
1996 and 2004 (11).

All identifying information was transformed into anony-
mous identifiers. Covariates were each measured at baseline
and included diagnoses and drug therapies occurring in the
180 days prior to treatment initiation. Further details on both

populations and the covariates assembled are given else-
where (2, 11). The studies were approved by the institutional
review board of Brigham and Women’s Hospital (Boston,
Massachusetts), and we had data-use agreements in place
with the Centers for Medicare and Medicaid Services
(Baltimore, Maryland) and the British Columbia Ministry
of Health (Victoria, British Columbia, Canada).

Table 2. Basic Measures of Association Observed for Drug Safety in 3 Cohorts of Patients, Pennsylvania (1994–2003) and British Columbia,

Canada (1996–2004)

Exposure: COX-2 Inhibitor Conventional APM Conventional APM

Referent: Nonselective NSAID Atypical APM Atypical APM

Outcome:
Severe Gastrointestinal

Complications
Death Death

Population: Pennsylvania Pennsylvania British Columbia

%
No. of
Events

Risk
Measure

95% CI %
No. of
Events

Risk
Measure

95% CI %
No. of
Events

Risk
Measure

95% CI

Risk of outcome in exposed
group

1.57 503 16.22 1,307 04.16 1,806

Risk of outcome in referent
group

1.38 243 13.53 1,628 9.70 2,307

Crude risk difference
(3100)

0.19 �0.03, 0.41 2.69 1.68, 3.70 4.46 3.75, 5.17

Crude risk ratio 1.14 0.98, 1.33 1.20 1.12, 1.28 1.46 1.38, 1.55

Crude odds ratio 1.14 0.98, 1.33 1.24 1.14, 1.34 1.54 1.44, 1.64

Abbreviations: APM, antipsychotic medication; COX-2, cyclooxygenase 2; NSAID, nonsteroidal antiinflammatory drug.

Table 3. Comparison of Risk Difference Models in 3 Cohorts of Patients, Pennsylvania (1994–2003) and British

Columbia, Canada (1996–2004)a

Exposure: COX-2 Inhibitor Conventional APM Conventional APM

Referent: Nonselective NSAID Atypical APM Atypical APM

Outcome:
Severe Gastrointestinal

Complications
Death Death

Population: Pennsylvania Pennsylvania British Columbia

RD 3 100 95% CI RD 3 100 95% CI RD 3 100 95% CI

Crude OLS model 0.19 �0.03, 0.41 2.69 1.65, 3.73 4.46 3.69, 5.23

Adjusted OLS model �0.07 �0.30, 0.16 3.91 2.68, 5.13 3.55 2.74, 4.37

2-stage least squares modelb �1.28 �2.56, 0.01 7.69 1.26, 14.12 4.00 0.94, 7.06

Logistic/OLS modelb,c �1.36 �2.58, -0.15 7.64 1.55, 13.74 4.84 1.80, 7.88

3-stage modelb,c �1.35 �2.53, �0.17 7.53 1.83, 13.24 4.76 1.81, 7.72

Crude probit marginal
effectsd model

0.19 �0.03, 0.41 2.69 1.68, 3.70 4.46 3.69, 5.23

Adjusted probit marginal
effectsd model

�0.05 �0.26, 0.17 3.51 2.32, 4.69 3.20 2.42, 3.97

IV-based probit marginal
effectsd modelb,c

�1.41 �3.14, 0.32 8.94 1.64, 16.24 3.88 0.67, 7.08

Abbreviations: APM, antipsychotic medication; CI, confidence interval; COX-2, cyclooxygenase 2; IV, instrumental

variable; NSAID, nonsteroidal antiinflammatory drug; OLS, ordinary least squares; RD, risk difference.
a All risk differences are scaled by 100.
b Instrumental variable analysis.
c Confidence intervals are based on bootstrapped standard errors.
d Marginal effects are the difference in predicted probability due to change of treatment status, evaluated at the

means of all covariates and scaled by 100.
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RESULTS

Characteristics of participants in the 3 cohorts of elderly
drug initiators are summarized in Table 1; each of these
covariates was controlled for in the adjusted analyses. Gen-

erally speaking, patients in Pennsylvania were older and
sicker than those in British Columbia.

Figure 1 shows histograms of the predicted probabilities
from first-stage ordinary least squares models for each
cohort. The vast majority of predicted values fell within the
appropriate 0–1 range, though the APM analyses produced
some predicted probabilities below 0.

Table 2 presents basic measures of absolute and relative
risk for outcomes in each of the 3 cohorts. The outcome in
the COX-2 inhibitor study was relatively rare, while the
APM outcomes were much more frequent. In keeping with
the observation that the Pennsylvania patients were gener-
ally sicker than their counterparts in British Columbia, the
baseline risk was higher in the Pennsylvania population than
in British Columbia, though British Columbia’s crude risk
difference was higher.

Table 3 and Figure 2 present results from the estimates of
risk difference. Most of the multistage models had similar
results for both the point estimate and the standard error,
though the British Columbia APM cohort exhibited differ-
ences between the 2-stage least squares model and the lo-
gistic first stage. The probit marginal-effects model’s results
were similar to the risk differences estimated by the 2-stage
models, and the marginal effects in our data were not sen-
sitive to whether the effect was calculated at the mean of the
covariates or averaged over all observations. We display the
data at the mean of all covariates.

Similarly, Table 4 and Figure 3 present results from esti-
mates of the odds ratio. The various approaches to instru-
mental variable regression all yielded comparable point
estimates. As with the risk differences, the standard errors
in the instrumental variable models were far higher than
those in the crude and adjusted models. The GMM and
2-stage logistic estimates agreed in 2 of the 3 cohorts but
disagreed markedly in the Pennsylvania APM cohort. With
regard to the probit scaling factor, scaling by 1.6 or 1.8
generally made little difference. Scaling by the ratio of the
crude estimates produced larger variation.

When addressing the issue of incorrect specification of
the error distribution in 2-stage least squares, one suggestion
is the use of a generalized linear model with a noncanonical
error structure (16). For our dichotomous outcome, we at-
tempted to use generalized linear models with binomial
error structures and identity and log links, with and without
covariates. In almost all cases, the models without covari-
ates converged as expected, but as the covariates were
added, the models failed to fit, either because predicted
values were outside the acceptable range or because of non-
convergence. Because of these models’ unpredictable be-
havior, we did not include them in our final analysis of
modeling techniques.

DISCUSSION

Instrumental variable analysis has traditionally been per-
formed using 2-stage least squares models that predict risk
differences. In this paper, we sought to empirically compare
the performance of 2-stage least squares with alternative in-
strumental variable approaches appropriate for dichotomous

Figure 2. Point estimates for 8 models of risk difference in 3
cohorts of patients. All risk difference estimates are scaled by 100.
(A) Pennsylvania cyclooxygenase 2 (COX-2) inhibitor cohort
(1994–2003); (B) Pennsylvania antipsychotic medication (APM) co-
hort; (C) British Columbia, Canada, APM cohort (1996–2004). OLS,
ordinary least squares; IV, instrumental variable. Bars, standard error.
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outcomes, in a reanalysis of 3 data sets. With regard to risk
differences, we observed little difference in point estimate or
precision between estimates from 2-stage least squares mod-
els and models using logistic first stages and ordinary least
squares second stages; in our data, this equivalence held with
both rare and frequent outcomes. With regard to relative
measures of risk, 2-stage logistic regression was satisfactory
in our data, though GMM models or 2-stage probit models
are considered by some to be more theoretically sound. As
expected, standard errors for all instrumental variable ap-
proaches were substantially larger than those of ordinary
regression.

In each of the examples, we anticipated the presence of
strong unmeasured confounding. In the APM example, we
hypothesized that the strongest unmeasured confounder
would be frailty, whereby frail patients would be less likely

to receive conventional treatment and more likely to die
such that the crude association would underestimate the true
effect. We also hypothesized that this effect would be stron-
ger in Pennsylvania than in British Columbia, given that the
Pennsylvania patients were older and sicker than the British
Columbia patients. In the COX-2 inhibitor case, we ex-
pected the strongest unmeasured confounders to be gastro-
intestinal risk factors that the physician considered for the
treatment choice but were not recorded in claims data such
that the crude association would overestimate the risk.

In the Pennsylvania studies, the data bore these hypotheses
out: In both the risk difference and relative risk models, we
saw the expected movement of point estimates. In the British
Columbia cohort, we saw a subtler movement that could be
explained by chance; the instrumental variable analyses sug-
gested that there was relatively little unmeasured confounding

Table 4. Comparison of Relative Risk Models in 3 Cohorts of Patients, Pennsylvania

(1994–2003) and British Columbia, Canada (1996–2004)

Exposure: COX-2 Inhibitor Conventional APM Conventional APM

Referent: Nonselective NSAID Atypical APM Atypical APM

Outcome:
Severe Gastrointestinal

Complications
Death Death

Population: Pennsylvania Pennsylvania British Columbia

RR 95% CI RR 95% CI RR 95% CI

Logistic model

Crude 1.14 0.98, 1.33 1.24 1.14, 1.34 1.54 1.43, 1.65

Adjusted 0.97 0.82, 1.13 1.39 1.25, 1.54 1.42 1.31, 1.54

2-stage logistic modela,b

Crude 0.54 0.25, 1.19 1.37 1.06, 1.77 1.70 1.39, 2.08

Adjusted 0.41 0.18, 0.94 2.01 1.21, 3.35 1.59 1.18, 2.14

Logistic GMM modela,b

Crude 0.56 0.28, 1.16 1.36 1.08, 1.71 1.67 1.41, 1.97

Adjusted 0.47 0.25, 0.86 1.38 1.03, 1.85 1.45 1.17, 1.80

Probit modelc

Crude

31.6 1.09 1.01, 1.17 1.20 1.14, 1.27 1.43 1.37, 1.50

31.8 1.10 1.01, 1.19 1.23 1.16, 1.31 1.50 1.43, 1.58

Adjusted

31.6 0.98 0.90, 1.06 1.31 1.22, 1.41 1.36 1.28, 1.44

31.8 0.98 0.90, 1.06 1.36 1.26, 1.47 1.41 1.33, 1.50

3CRd 0.97 0.87, 1.07 1.36 1.26, 1.47 1.44 1.35, 1.53

IV probit modela,c

31.6 0.58 0.39, 0.87 1.88 1.29, 2.74 1.44 1.16, 1.79

31.8 0.54 0.35, 0.84 2.04 1.37, 3.04 1.51 1.20, 1.90

3CRd 0.42 0.25, 0.70 2.07 1.38, 3.09 1.54 1.22, 1.96

Abbreviations: APM, antipsychotic medication; B, bootstrap; CI, confidence interval; COX-2,

cyclooxygenase 2; CR, crude ratio; GMM, generalized method of moments; IV, instrumental

variable; NSAID, nonsteroidal antiinflammatory drug; RR, relative risk.
a Instrumental variable analysis.
b Confidence intervals are based on bootstrapped standard errors.
c Probit models’ coefficients are scaled by the indicated amounts.
d Scaled by the ratio of the crude logit estimate to the crude probit estimate.
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or, alternatively, that the instrumental variable did not adjust
for the unmeasured confounding that was present.

In the analysis of our data, we did not see great benefit to
the marginal effects models that predicted risk differences;
the marginal effects estimate and the 2-stage least squares
estimate were very similar. While the marginal effects were
derived from a 2-stage probit model which is appropriate for
dichotomous data, the lack of analytic standard errors and
the need to pick a point or set of points at which to estimate
the marginal effect appeared to us to be drawbacks that
outweighed the potential benefits. We did consider the mar-
ginal effect estimates to be helpful in validating the 2-stage
least squares results that we observed.

We also did not see a large benefit of the 3-stage model as
compared with the logistic/ordinary least squares model or
2-stage least squares. Again, while the 3-stage model is
theoretically justified, the complexity did not seem to pro-
vide benefit in our data. In the 1 case where the approaches
differed (British Columbia APM), the variation was well
within the margin of error.

In the realm of the odds ratio, the 2-stage logistic model
performed similarly to the GMM model in the COX-2 in-
hibitor cohort and in the British Columbia APM cohort;
there was a difference in the Pennsylvania APM group.
The 2-stage logistic model was faster and more straightfor-
ward to compute than GMM since we could implement it in
a standard software package. While time and software may
be practical concerns, when choosing a model we would
place more weight on whether GMM’s moments-based ap-
proach is more appropriate than the 2-stage logistic model’s
parametric requirements in cases where there is concern
about model misspecification.

Many of our results were estimates of the risk ratio or
odds ratio rather than the risk difference. Though the choice
of preferred measure will be motivated by the investigators’
needs in a particular study, we did see 1 overall benefit of the
relative measures. Instrumental variable methods generally
yield estimates with larger variance than do their conven-
tional counterparts, and confidence intervals can be conse-
quently large. As such, the confidence interval for a risk
difference estimate may move outside reasonable bounds,
when the confidence interval of a relative measure of the
same effect could remain more plausible. Consider our
COX-2 inhibitor example: The lower bound of the 2-stage
least squares confidence interval for COX-2 inhibitors in
Pennsylvania (left columns of Table 3) is �2.56 per 100,
with a baseline risk in the unexposed of 1.38 per 100 (Table 2).
This risk difference seems implausibly large, even allow-
ing for the possibility of substantial treatment effect het-
erogeneity. On the other hand, from Table 4, the
associated odds ratio predicted by the 2-stage logit model
is 0.41, with a 95% confidence interval of (0.18, 0.94).
The confidence interval is still wide, but to our eyes it
does not present the same challenge for interpretability.

There are alternatives to the approaches presented here. In
particular, a causal parameter using a structural mean model
(34, 35) on the multiplicative scale can be computed. Fol-
lowing the equation shown in the appendix of the paper by
Hernán et al. (8), we computed unadjusted causal risk ratios
of 0.44 for the Pennsylvania COX-2 inhibitor cohort, 1.32

Figure 3. Point estimates for 10 models of relative risk or odds ratio
in 3 cohorts of patients. (A) Pennsylvania cyclooxygenase 2 (COX-2)
inhibitor cohort (1994–2003); (B) Pennsylvania antipsychotic medica-
tion (APM) cohort; (C) British Columbia, Canada, APM cohort (1996–
2004). GMM, generalized method of moments; IV, instrumental
variable. Bars, standard error.
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for the Pennsylvania APM cohort, and 1.61 for the British
Columbia APM cohort; these figures were similar to the
results obtained using 2-stage logistic regression. Bootstrap-
ped standard errors were in line with other methods for the
APM examples but much wider for the COX-2 inhibitor
example. The width of the COX-2 inhibitor confidence in-
terval may be due to the rarity of the lower frequency of
events: 1.38% risk in the referent group in the COX-2 in-
hibitor study versus 13.53% in the Pennsylvania APM study.
Beyond structural mean models, there are also approaches
suggested by Abadie (36) and Mullahy (37).

We evaluated a number of models for estimating causal
risk differences and relative risks in settings of expected
strong unmeasured confounding. In our data, we saw rela-
tively little difference between the various instrumental vari-
able approaches, despite their reliance on different
assumptions. The methods may yield differences that are
more substantively relevant when many continuous covari-
ates need to be included in the model and thus when mod-
eling assumptions are likely to be more important. While we
attempted solely to explore the issues empirically, a theoret-
ical treatment of the comparative effectiveness of these
models may be in order.
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APPENDIX

Estimating Risk Differences With Nonlinear Models

Both probit and logistic models can be used to estimate
relative risks by examining the part of the slope of the dis-
tribution function that is ‘‘contributed’’ by the effect of the
treatment. Since the function tracks a probability, the slope
is the difference in probability of outcome associated with
changing nothing but treatment status: a risk difference.

Mathematically, the risk difference can be calculated by
taking the partial derivative of the logistic or probit cumu-
lative distribution function with respect to the treatment.
This is often called the ‘‘marginal effect’’ in software and
in the literature, but note that the word ‘‘marginal’’ in this
case is not referring to the marginal patient. This slope must
be evaluated at a particular point and will not be the same
throughout since the underlying function is not a straight
line. Two approaches are conventional: 1) to evaluate the
slope at the center of all measured variables (i.e., where age
is at its mean, male gender is at its mean prevalence, etc.)
and 2) to evaluate the slope at each point defined by the

Appendix Figure. Comparison of risks of severe gastrointestinal complications as predicted by the logit and 1.63 scaled probit models, plotted
across the range of ages, using data on use of cyclooxygenase 2 inhibitors from Pennsylvania (1994–2003). Circles show the predicted risks from
the probit model; diamonds show the predicted risks from the logit model. Filled symbols indicate predicted risk in exposed patients; unfilled
symbols indicate predicted risk in unexposed patients. The difference between the exposed and the unexposed, interpretable as an age-adjusted
risk difference (RD), is plotted on the right-hand vertical axis.

Instrumental Variable Analysis With Dichotomous Outcomes 283

Am J Epidemiol 2009;169:273–284

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/169/3/273/86119 by guest on 17 April 2024

http://www.fda.gov/cder/foi/label/2006/021444s008s015,020588s024s028s029, 020272s036s041lbl.pdf
http://www.fda.gov/cder/foi/label/2006/021444s008s015,020588s024s028s029, 020272s036s041lbl.pdf


observations in the data (1,000 observations will define up to
1,000 points) and then take the mean of the observed slopes
(6).

The Appendix Figure shows an example from the
Pennsylvania cyclooxygenase 2 inhibitor study. In this
figure, the probit- and logistic-predicted probabilities
are plotted; we have ‘‘deconstructed’’ the slope (risk dif-
ference) by showing the exposed and unexposed groups
separately. To demonstrate that the choice of evaluation

point will affect the estimate, variation in 1 covariate
(age) is plotted. The marginal effect observed at the mean
age, interpretable as an age-adjusted risk difference, is
0.046 as estimated by the probit model and 0.042 as es-
timated by the logit model. The probit figure falls in be-
tween the observed crude risk difference of 0.19 and the
fully adjusted risk difference of �0.05 (Table 3). Risk
differences vary from approximately �0.03 to approxi-
mately �0.06 across the age range.
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