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The authors evaluated whether there is an excess of statistically significant results in studies of genetic asso-
ciations with Alzheimer’s disease reflecting either between-study heterogeneity or bias. Among published articles
on genetic associations entered into the comprehensive AlzGene database (www.alzgene.org) through January
31, 2007, 1,348 studies included in 175 meta-analyses with 3 or more studies each were analyzed. The number of
observed studies (O) with statistically significant results (P ¼ 0.05 threshold) was compared with the expected
number (E ) under different assumptions for the magnitude of the effect size. In the main analysis, the plausible
effect size of each association was the summary effect presented in the respective meta-analysis. Overall, 19
meta-analyses (all with eventually nonsignificant summary effects) had a documented excess ofO over E: Typically
single studies had significant effects pointing in opposite directions and early summary effects were dissipated over
time. Across the whole domain, O was 235 (17.4%), while E was 164.8 (12.2%) (P < 10�6). The excess showed
a predilection for meta-analyses with nonsignificant summary effects and between-study heterogeneity. The excess
was seen for all levels of statistical significance and also for studies with borderline P values (P ¼ 0.05–0.10). The
excess of significant findings may represent significance-chasing biases in a setting of massive testing.

Alzheimer disease; bias (epidemiology); genetic markers; genetics; meta-analysis; publication bias

Abbreviations: ABCA, ATP-binding cassette transporter A; ACE, angiotensin-converting enzyme; APBB, amyloid beta (A4) pre-
cursor protein-binding family B; APOE, apolipoprotein E; BDNF, brain-derived neurotrophic factor; CTSD, cathepsin D; IL6,
interleukin-6.

Genetic epidemiology is a rapidly evolving field, and the
number of published reports is increasing geometrically (1).
Many ‘‘significant’’ genetic associations are proposed, but
several of them may represent false-positive results (2–5).
As we have moved into large-scale testing of associations
(6–8), understanding biases in statistically significant results
is becoming increasingly useful.

Evaluation of observational associations has traditionally
rested on P values and hypothesis-testing using nominal
levels of statistical significance. This widespread practice
may bias the accumulated evidence on single associations
or in large fields of research (9). Various types of biases have
been described. In publication bias, studies with nominally
statistically significant (‘‘positive’’) results are more likely

to be published than other (‘‘negative’’) findings (10–13).
The latter findings may be published after a delay (time-lag
bias) (14) or may remain unpublished. Selective analysis
and outcome reporting bias also lead to overrepresentation
of nominally statistically significant outcomes and findings
and concealment of non-statistically significant results
within the same study (15–17). Finally, some statistically
significant results may be fabricated (fake data), hopefully
uncommonly (18–20). All of these biases converge towards
increasing the relative proportion of nominally statistically
significant findings in a body of evidence as compared with
what would be expected in the absence of bias.

Several tests have been proposed for assessing the pres-
ence of publication bias, but they have limitations (21–24).
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They are designed to be applied to data from single meta-
analyses of studies that all pertain to the same research
question. Inferences derived from single meta-analyses
are limited by the fact that usually few studies are avail-
able; thus, these tests are underpowered (25, 26). Recently,
Ioannidis and Trikalinos (27) proposed an exploratory test
that examines whether there is an excess of significant
results in a whole domain of research. Identification of an
excess of significant findings with this test can result either
from significance-chasing biases or from excessive hetero-
geneity (diversity of effects) between studies on the same
research question. Between-study heterogeneity could be
due either to genuine diversity or to biases.

This test can be applied not only to singlemeta-analyses but
also to whole domains of research across collections of many
meta-analyses. Application in meta-analyses of clinical trials
shows an overrepresentation of statistically significant treat-
ment effects in some randomized clinical research, such as
research on the effectiveness of diverse neuroleptic treatments
(27). Some data suggest a possible excess of significant find-
ings in genetic epidemiology, such as the Chinese-language
literature on genetic associations or genetic associations in
myocardial infarction (28, 29). Empirical surveys also corrob-
orate the preference for reporting ‘‘positive’’ results in genetic
epidemiology (30), and various investigators have reported
evidence for publication bias in selected associations (31,
32). However, solid evidence requires the examination of
large domains of genetic research, encompassing many hun-
dreds of studies. Such large-scale evaluationsmay also help us
evaluate whether excesses of statistically significant findings
are due mostly to bias or to genuine heterogeneity.

Here, we applied this exploratory test to cumulative data
contained in the AlzGene database (33). Alzheimer’s dis-
ease is a prolific field in genetic association studies. With
over 1,000 individual publications included to date, Alz-
Gene offers the unique opportunity to study a large domain
of observational research for a potential excess of statisti-
cally significant findings and to try to understand the reasons
for such an excess.

MATERIALS AND METHODS

Database

AlzGene is a comprehensive, publicly available, regularly
updated collection of published genetic association studies
performed on Alzheimer’s disease phenotypes. Details on
study selection criteria and data displayed are described in
detail elsewhere (33) (http://www.alzforum.org/res/com/
gen/alzgene/methods.asp).

For consistency, the term ‘‘study’’ here refers to a case-
control analysis of a specific polymorphism in persons of
a certain ethnic background; thus, a published article may
contain one or more ‘‘studies’’ (of different ethnic groups
and/or different polymorphisms) in the same paper. All stud-
ies indexed in AlzGene up through January 31, 2007, were
potentially eligible for our evaluation. Our main analyses
excluded the apolipoprotein E (APOE) epsilon polymor-
phism, which has an extensively documented, atypically
large, indisputable effect; however, we present separately

results for this association. AlzGene studies have been scru-
tinized for overlapping data sets (33). We sought the follow-
ing information from each study: first author and year of
publication, PubMed identification number (whenever
available), gene, polymorphism, ethnic group, total numbers
of cases and controls, and allele counts in cases and controls.

Meta-analysis methods

Meta-analyses in AlzGene are performed whenever ge-
notype data from 3 or more studies on the same polymor-
phism are available (33). The odds ratio per copy of the
allele was our metric of choice. Whenever genotype counts
for cases and/or controls were 0, we added 0.5 to all cells of
the 2 3 2 table to conduct calculations. A random-effects
model was used for all meta-analyses (34). Random effects
assume the possibility of a different underlying effect for
each study in the meta-analysis and take this into consider-
ation as an additional source of variation. When there is
no between-study heterogeneity, fixed-effects (35) and
random-effects estimates coincide. In the presence of
between-study heterogeneity, the basic assumption of fixed
effects is violated; thus, random effects are typically more
appropriate.

Between-study heterogeneity was evaluated using the
Cochran Q statistic (36) and the I2 metric (37). Q is consid-
ered statistically significant for P < 0.10. I2 provides an
estimate of the observed heterogeneity due to reasons
beyond chance. Typically, values greater than 50% are con-
sidered to represent large heterogeneity and values of 25%–
50% are considered to represent modest heterogeneity (37).

Test for excess of significant findings in single
meta-analyses

The test is described in detail elsewhere (27). Briefly, in
each meta-analysis, we assessed whether the observed num-
ber of studies (O) with statistically significant (‘‘positive’’)
results at the 0.05 level differed from the expected number
of studies (E) with ‘‘positive’’ results (27). We counted sig-
nificant results in both directions. The expected probability
that a specific single study i will find a ‘‘positive’’ result
equals its power to detect a plausible effect size at the
0.05 level. E equals the sum of the expected probabilities
across all n studies on the same question. For the main
application of the test, we use the summary odds ratio of
the respective meta-analysis (random-effects calculations)
as the plausible effect size (27). Inferences can use the
chi-squared statistic

A ¼ ðO� EÞ2

E
þ ðO� EÞ2

n� E
~ v21

or a binomial probability test, which is preferable when
numbers are small, and the latter was used in the current
study.

The power of the test is simply the power of a chi-squared
or binomial test. This is low when there are few ‘‘positive’’
studies; thus, P < 0.10 is used for inferences, as in
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asymmetry tests (23, 25). Besides statistical testing, we also
examined the O:E ratio.

For meta-analyses in which O significantly exceeds E
(P < 0.10), this could reflect bias or genuine between-study
heterogeneity in genetic effects. Bias also may often cause
between-study heterogeneity. To differentiate genuine het-
erogeneity from bias, we also performed cumulative meta-
analyses to explore the evolution of the summary effect over
time (per calendar year of publication), as more studies were
published on the same association. We wanted to see
whether there was a succession of studies with nominally
statistically significant effects pointing in one direction fol-
lowed by studies with statistically significant effects point-
ing in the other direction that led to dissipation of the overall
summary effect, suggestive of bias (38). Conversely, if the
excesses ofO over Ewere due to genuine diversity of effects
without bias, there would be no reason why the average
effect should be more likely to increase or decrease over
time, and one would expect mostly different studies to show
different magnitudes of effect rather than different large
effects in completely opposite directions.

Excess of significant findings in the whole domain of
Alzheimer’s disease genetic associations

All meta-analyses in a single research field constitute
a domain (27). The total number of observed ‘‘positive’’
studies and the total number of expected ‘‘positive’’ studies
in the whole domain are the sums of the observed and ex-
pected numbers of ‘‘positive’’ studies at the meta-analysis
level, counting all eligible meta-analyses.

In our main evaluation, we considered all meta-analyses
included in AlzGene (associations with data on at least
3 eligible studies). Furthermore, we evaluated meta-analyses
according to the estimated amount of between-study hetero-
geneity (those with I2 � 50% vs. those with I2 > 50%);
according to the statistical significance of the summary
effect (meta-analyses with nominally statistically signifi-
cant associations vs. those with associations that were

Table 1. Characteristics of 175 Meta-Analysesa of Genetic

Associations with Alzheimer’s Disease Included in the AlzGene

Database through January 31, 2007

Characteristic No. %
Interquartile

Range

Median no. of studies
included per meta-analysis

10 5–22

Median sample size per
meta-analysis

2,594 1,665–4,092

Median sample size
per study

412 259–692

No. of meta-analyses with
statistically significant
results (P < 0.05)

40 22.9

No. of meta-analyses
with I 2 � 50%

114 65.1

a A list of the studies analyzed is available from the authors upon

request.

Figure 1. Representative forest plots of meta-analyses for typical
patterns of included studies. A) Statistically significant summary effect
and all significant studies point in the same direction as the overall
estimate (cholesterol 25-hydroxylase (CH25H) rs13500); B) non-
statistically significant summary estimate with one or several significant
studies pointing in the same direction (amyloid beta (A4) precursor
protein-binding, family B, member 1 (APBB1) rs1799755); C) non-
statistically significant summary estimate and significant studies point-
ing in both directions (interleukin-10 (IL10) rs1800871 (�819)). In each
meta-analysis (parts A–C), studies are ordered by year of publication.
CI, confidence interval. (The articles used as sources for these meta-
analyses are listed in a supplement posted on the Journal ’s website
(http://aje.oxfordjournals.org/).)

Significant Findings in Genetic Association Studies 857

Am J Epidemiol 2008;168:855–865

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/168/8/855/138613 by guest on 24 April 2024

http://aje.oxfordjournals.org/


nonsignificant at the P ¼ 0.05 threshold); and according to
the presence or absence of estimated large between-study
heterogeneity and nominally significant results.

Consideration of different effect estimates

If some form of significance-chasing bias exists in the
body of evidence on a research question, the summary odds
ratio based on the observed data may be inflated in compar-
ison with the true effect (27). Therefore, in additional anal-
yses, we assumed the plausible effect estimate to be half of
the log odds ratio. Finally, we performed analyses that con-
sidered a fixed value as the plausible effect size in significant
associations. Based on recent experience suggesting mostly
small effects (39, 40), we considered plausible odds ratio
values of 1.05, 1.15, and 1.25.

Excess of studies with results at specific levels of
statistical significance

All of the above testing aims to estimate the expected
number of studies that are statistically significant using
a P¼ 0.05 threshold and compare them against the observed
studies that have significant results based on the same

threshold. However, the concept can be generalized to any
P value threshold. Therefore, we calculated E and counted
O using different a thresholds (i.e., 0.30, 0.20, 0.15, 0.10,
0.05, 0.03, 0.01, and 0.001). This allowed us to estimate E
and compare it against the respective O for the P value
intervals 0.30–0.20, <0.20–0.10, <0.10–0.05, <0.05–0.01,
and <0.01. We assessed whether there was an excess of
studies with P values clustering in a specific range. In clin-
ical trials, significance-chasing bias has been linked to an
excess of studies with formally statistically significant re-
sults barely crossing the traditional P ¼ 0.05 threshold (i.e.,
studies with P values of 0.01–0.05), but this may not
always be the case (27), and it is unknown whether this also
applies to genetic epidemiology.

Software

Meta-analyses were performed using the metan andmeta-
cummodules. Power was estimated by means of simulations
(1,000 replicates per analysis), using a previously developed
module based on Fisher’s exact test (module downloaded
from http://www.dhe.med.uoi.gr/software.htm) (27). P values
were 2-tailed. Analyses were performed using Intercooled
Stata 8.2 (Stata Corporation, College Station, Texas).

Table 2. Observed (O) and Expected (E ) Numbers of Studies with Statistically Significant (P < 0.05) Results in AlzGene Meta-Analyses with

a Statistically Significant Excess Number of ‘‘Positive’’ Studies

Gene Polymorphism Odds Ratio
95% Confidence

Interval
No. of
Studies

O E P Valuea
O:E
Ratio

ABCA1 rs2066718 1.16 0.74, 1.83 5 2 0.32 0.03 6.25

ACE Intron 16 (ins/del) 1.07 0.99, 1.16 39 9 2.75 <0.001 3.72

APBB2 hCV1558625 1.12 0.85, 1.46 3 2 0.50 0.08 4.00

APOE promoter rs769446 (�427) 0.85 0.70, 1.03 12 3 1.08 0.09 2.78

BCHE rs1803274 K-variant 1.10 0.96, 1.26 27 6 1.80 0.01 3.34

BDNF C270T 1.11 0.82, 1.51 15 4 0.73 0.01 9.28

BDNF rs6265 V66M 1.04 0.96, 1.13 20 3 1.06 0.09 2.83

CTSD rs17571 (A224V) 1.14 0.98, 1.33 22 4 1.58 0.07 2.53

ESR1 PvuII 1.11 0.98, 1.26 15 4 1.45 0.05 2.76

ESR1 XbaI 1.12 0.97, 1.29 16 5 1.58 0.02 3.16

IL6 rs1800795 0.89 0.75, 1.05 14 5 1.85 0.03 2.70

IL10 rs1800871 (�819) 1.04 0.71, 1.53 6 2 0.33 0.04 6.06

IL10 rs1800872 (�592) 1.00 0.78, 1.29 8 2 0.36 0.05 5.56

IL10 rs1800896 (�1082) 0.89 0.72, 1.11 8 3 0.78 0.04 3.85

LRP1 rs1799986 (exon 3) 0.94 0.83, 1.06 27 5 1.42 0.01 3.52

MPO rs2333227 1.01 0.80, 1.28 9 3 0.40 0.01 7.5

PLAU rs2227564 1.07 0.94, 1.21 21 6 1.28 <0.001 4.69

SLC6A4 HTTLPR 1.04 0.83, 1.31 9 2 0.46 0.07 4.35

TFCP2 3#-UTR 0.77 0.55, 1.07 7 4 1.26 0.02 3.17

Abbreviations: ABCA1, ATP-binding cassette transporter A1; ACE, angiotensin-converting enzyme; APBB2, amyloid beta (A4) precursor

protein-binding family B, member 2; APOE, apolipoprotein E; BCHE, butyrylcholinesterase; BDNF, brain-derived neurotrophic factor; CTSD,

cathepsin D; ESR1, estrogen receptor 1; HTTLPR, serotonin-transporter-linked polymorphic region; IL6, interleukin-6; IL10, interleukin-10;

LRP1, low density lipoprotein-related protein 1; MPO, myeloperoxidase; PLAU, plasminogen activator, urokinase; SLC6A4, serotonin transporter

gene; TCFP2, transcription factor CP2; UTR, untranslated region.
a P value for the difference between O and E (i.e., O � E ).
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RESULTS

AlzGene database

Based on studies included in AlzGene through January
31, 2007 (date of data freeze), 176 polymorphisms in 93
genes had been evaluated in at least 3 studies for their as-
sociation with Alzheimer’s disease (a total of 1,565 studies).
Of those, 150 studies overlapped with others, and 67 studies
did not provide usable genotype or allele data. Thus, we
analyzed 1,348 studies for 175 polymorphisms in 93 genes
(Table 1). Data were derived from 584 different articles. The
175 meta-analyses included 3–47 studies each (median, 10).
(A list of the studies analyzed is available from the authors
upon request.) Forty meta-analyses had statistically signifi-
cant summary effects: Nine did not include any statistically
significant study, while 31 included significant studies with
effects pointing in the same direction as the summary esti-
mate (Figure 1, part A). Among the 135 nonsignificant
meta-analyses, 56 had no significant studies, 59 had one
or more significant studies with an effect pointing in a single

direction (Figure 1, part B), and 20 included significant
studies with effects pointing in both directions (Figure 1,
part C). Almost two-thirds of the meta-analyses (n ¼ 114)
had estimates of I2 that did not suggest large heterogeneity
(>50%).

Evaluation of single meta-analyses

Among the 175 meta-analyses included in our sample, 19
showed a significant excess (P < 0.10) of studies with nom-
inally statistically significant results compared with those
that would be expected. None of these 19 meta-analyses
had found a nominally statistically significant association
between Alzheimer’s disease and the tested polymorphisms
(Table 2). The median number of studies included in these
meta-analyses was 15 (interquartile range, 8–22; maxi-
mum ¼ 39), whereas in the other 156 meta-analyses, the
median was 5 (interquartile range, 3–7; maximum ¼ 47). In
17 of the 19 meta-analyses, single studies had reported nom-
inally statistically significant results with effect estimates
pointing in opposite directions. Given these opposite effects,
15 of the 19 meta-analyses had I2 > 50%, while the other 4
(meta-analyses of ATP-binding cassette transporter A1
(ABCA1) rs2066718, cathepsin D (CTSD) rs17571 (A224V),
APOE promoter rs769446 (�427), and brain-derived neuro-
trophic factor (BDNF) rs6265 (V66M)) had I2 values of
48%, 43%, 38%, and 30%, respectively.

The articles on the studies included in each of these 19
meta-analyses had been published over a period ranging
from 1 year to 10 years (median, 5.5 years; interquartile
range, 3–8). In 2 meta-analyses (meta-analyses of amyloid
beta (A4) precursor protein-binding family B, member
2 (APBB2) hCV1558625 and ABCA1 rs2066718), all of
the studies included had been published in the same year.
For the APBB2 polymorphism, actually, all studies had been
conducted and published by the same team in the same
article. In the other 17 cumulative meta-analyses (Figure 2),
in 15 the strongest effect estimate was shown in the first
publication (or in the first year of publications, whenever
several studies were published within this year), and for
another 2 meta-analyses this occurred in the next calendar
year (angiotensin-converting enzyme (ACE) intron 16
(insertion/deletion), interleukin-6 (IL6) rs1800795).

In 14 of the 19 associations with a documented excess of
significant studies, cumulative meta-analyses showed nomi-
nally significant summary effects at some point. Opposite
results often appeared very soon. In 5 meta-analyses, signif-
icance was lost with the appearance of additional studies in
the same year, and 6 meta-analyses lost significance in the
following calendar year; 2 took 3 years, while 1 took 4 years.

For the well-documented APOE epsilon 4 association, in
the epsilon 4 versus epsilon 3 comparison, we obtainedO¼ 32
and E ¼ 31.7 (P ¼ 1.00).

Test for excess of significant findings in the whole
domain

Among 1,348 studies included in 175 meta-analyses, 235
(O ¼ 235; 17.4%) were formally statistically significant at
the P ¼ 0.05 threshold, while the expected number was

Figure 2. Cumulative effect estimates (odds ratios) per year after
publication of the first study for meta-analyses that showed a statisti-
cally significant (P < 0.10) excess of observed significant studies
compared with the expected ones. The first year of publication is
shown at time point 0. Each circle corresponds to the point estimate
of the cumulative meta-analysis in a given year. The point estimate is
updated as new studies are published.
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164.8 (E ¼ 164.8; 12.2%). This difference was highly sta-
tistically significant (P < 10�6). The ratio of O to E was
1.43. However, the excess of significant findings was largely
confined to the meta-analyses that had non-statistically
significant summary effects and large between-study hetero-
geneity, where the observed number of studies with signif-
icant findings exceeded the expected number by 2.5-fold
(Table 3). There was modest correlation between I2 and
O:E (Figure 3; Pearson r ¼ 0.63).

Based on the available number of studies and O counts,
the power of the test to detect an excess of significant find-
ings with O:E ¼ 1.4 in the whole domain and in the sub-
groups of I2 � 50%, I2 > 50%, significant associations, and
nonsignificant associations was 96%, 68%, 92%, 67%, and
91%, respectively.

Consideration of different effect estimates

When we used half of the log odds ratio as the plausible
effect estimate, there were 2.6 times more statistically sig-
nificant studies than one would expect (235 vs. 90.4; P <
10�6). Even for significant associations without large hetero-
geneity, this assumption inferred that O exceeded E by 2.3-
fold. There was a significant excess of significant findings in
8 of the 40 meta-analyses with statistically significant asso-
ciations (Table 4). However, 2 of these 8 variants were in
linkage disequilibrium with APOE epsilon, and another 3
were in genes where additional variants existed with statis-
tically significant meta-analyses and without an excess of
significant findings. If we assumed that the odds ratios per
allele copy were 1.05, 1.15, and 1.25, then 13, 7, and 5 of
these 40meta-analyses, respectively, would have a significant
excess (P < 0.10) of significant estimates in single studies.

Excess of studies with results at specific levels of
statistical significance

As Figure 4 shows, there was overall a strong excess of
studies with P values close to but not passing the typical

0.05 threshold for statistical significance (P ¼ 0.05–0.10).
There was a less prominent excess for studies with P values
in the 0.01–0.05 range and another clear excess of studies
with P values less than 0.01.

Among meta-analyses of statistically significant associa-
tions, there was a modest excess of studies with borderline
significance (P¼ 0.05–0.10). Among meta-analyses of non-
statistically significant associations, the excess became
more prominent with lower P values, particularly P <
0.01 (Figure 2). This pattern was driven primarily by het-
erogeneous meta-analyses of non-statistically significant
associations, where the O:E ratio was 4 in the P < 0.01
category (Figure 5).

Table 3. Results from Testing for an Excess of Significant Findings in Meta-Analyses Included in the AlzGene Databasea

No. of
Studies

No. of
Meta-Analyses

Summary Effect Point Estimate Sensitivity Analysis 1

O b E b P Valuec O:E E P Valuec O:E

All meta-analyses 1,348 175 235 164.8 <10�6 1.61 90.4 <10�6 2.60

I2 � 50% 770 114 85 86.7 0.91 0.98 48.8 10�6 1.74

I2 > 50% 578 61 150 78.14 <10�6 1.92 41.6 <10�6 3.61

Statistically significant associations 241 40 69 74.40 0.49 0.93 30.3 <10�6 2.28

Non-statistically significant associations 1,107 135 166 90.40 <10�6 1.84 60.1 <10�6 2.76

I2 � 50% and significant associations 175 35 40 46.4 0.30 0.86 18.7 4 3 10�6 2.13

I2 � 50% and nonsignificant associations 595 79 45 40.2 0.41 1.12 30.1 0.008 1.50

I2 > 50% and significant associations 66 5 29 28.0 0.80 1.04 11 10�6 2.64

I2 > 50% and nonsignificant associations 512 56 121 50.2 <10�6 2.41 30.0 <10�6 4.03

a The main results assume that the plausible effect in each meta-analysis is given by the summary effect (odds ratio) of the meta-analysis. Also

shown are results from evaluations using half of the log odds ratio (‘‘Sensitivity Analysis 1’’) as the plausible effect.
b E, expected number of studies with nominally statistically significant results (P ¼ 0.05 threshold) included in the meta-analyses; O, observed

number of significant studies.
c P value for the difference between O and E (i.e., O � E ).

Figure 3. Scatterplot of the heterogeneity I 2 metric and O :E ratio
(number of observed studies (O) with statistically significant results
(P ¼ 0.05 threshold) vs. the number expected (E )) for the 175 meta-
analyses included in the analysis. The filled circles stand for meta-
analyses with a nonsignificant excess of observed versus expected
significant meta-analyses, and the open diamonds stand for meta-
analyses with a significant excess of observed versus expected sig-
nificant meta-analyses.
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Table 4. Observed (O) and Expected (E ) Numbers of Studies with Statistically Significant (P < 0.05) Results in AlzGene Meta-Analyses with

Formally Statistically Significant Associationsa

Gene Polymorphism
Odds
Ratio

95% Confidence
Interval

No. of
Studies

O

E P Value

Main
Analysis

Sensitivity
Analysis 1

Main
Analysis

Sensitivity
Analysis 1

ACE rs1800764 (ACE7) 0.83 0.72, 0.95 5 0 1.09 0.44 0.59 1.00

ACE rs4291 (ACE6) 0.86 0.75, 0.99 5 0 0.72 0.34 1.00 1.00

ACE rs4362 (ACE2) 0.83 0.70, 0.99 3 0 0.63 0.27 1.00 1.00

APOC1 Ins/del (HpaI)b 2.07 1.67, 2.57 13 8 10.79 5.32 0.05 0.16

APOE promoter rs405509 (Th1/E47cs) 0.79 0.71, 0.87 15 5 5.88 2.03 0.79 0.04*

APOE promoter rs440446 (þ113) 0.58 0.50, 0.68 4 3 3.68 1.92 0.28 0.36

APOE promoter rs449647 (�491) 0.72 0.63, 0.81 36 13 10.79 4.01 0.47 �0.001*

CH25H rs13500 1.44 1.08, 1.93 7 4 2.46 0.86 0.25 0.01*

CHRNB2 rs4845378 0.67 0.50, 0.90 4 1 0.95 0.35 1.00 0.30

CST3 5#-UTR-157 1.23 1.03, 1.47 4 0 0.79 0.33 1.00 1.00

CST3 5#-UTR-72 1.28 1.05, 1.56 3 0 0.81 0.30 0.57 1.00

CST3 rs1064039 1.15 1.02, 1.31 9 1 1.04 0.57 1.00 0.44

DAPK1 rs4877365 0.80 0.69, 0.92 3 1 1.27 0.44 1.00 0.38

DAPK1 rs4878104 0.87 0.79, 0.95 6 1 1.49 0.60 1.00 0.47

DNFB31 rs2274159 1.18 1.05, 1.34 3 1 0.99 0.37 1.00 0.33

GAPDHS rs12984928 0.82 0.71, 0.95 3 1 1.24 0.44 1.00 0.38

GAPDHS rs4806173 0.81 0.71, 0.94 3 2 1.34 0.46 0.59 0.06*

IL1b rs1143634 (þ3953) 1.18 1.03, 1.34 7 1 0.98 0.47 1.00 0.39

LOC439999 rs498055 1.18 1.03, 1.34 7 3 1.83 0.70 0.39 0.03*

LPL rs320 (HindIII) 0.73 0.59, 0.90 3 1 1.15 0.40 1.00 0.35

MAPT rs1467967 (promoter) 0.86 0.75, 1.00 4 0 0.65 0.31 1.00 0.56

MAPT rs242557 (promoter) 1.34 1.01, 1.53 4 0 1.20 0.45 0.59 0.07*

MAPT rs2471738 (intron 9) 1.42 1.20, 1.70 4 2 1.89 0.64 1.00 0.12

NCSTN �119 intron 16 1.38 1.03, 1.83 3 1 0.72 0.31 0.56 0.28

POMT1 rs2018621 1.70 1.24, 2.34 3 2 1.34 0.42 0.59 0.05*

PON1 rs662 (R192Q) 0.86 0.77, 0.97 8 1 1.02 0.51 1.00 0.41

PRNP rs1799990 (M129V) 0.89 0.81, 0.98 10 1 1.26 0.69 1.00 0.51

SOAT1 rs1044925 1.31 1.11, 1.55 4 1 1.26 0.45 1.00 0.38

SORCS1 rs600879 1.24 1.04, 1.47 4 1 0.85 0.37 1.00 0.32

SORL1 rs2070045 1.20 1.02, 1.41 5 1 1.55 0.60 1.00 0.47

SORL1 rs2282649 1.14 1.03, 1.26 5 1 1.00 0.44 1.00 0.37

SORL1 rs3824968 1.21 1.01, 1.45 5 2 1.83 0.67 1.00 0.13

SORL1 rs661057 0.84 0.73, 0.96 5 1 1.81 0.63 0.66 0.49

SORL1 rs668387 0.82 0.69, 0.98 5 2 2.10 0.74 1.00 0.16

TF rs1049296 (P570S) 1.21 1.07, 1.39 13 2 1.92 0.90 1.00 0.23

TFAM rs2306604 0.78 0.62, 0.98 3 0 0.62 0.23 1.00 1.00

TGFB1 rs9282871 (Leu10Pro) 0.87 0.77, 0.99 3 0 0.67 0.29 1.00 1.00

TNF �863 0.71 0.53, 0.96 3 2 1.01 0.37 0.26 0.04*

TNF rs4647198 (�1031) 1.37 1.05, 1.78 3 1 0.73 0.26 0.57 0.24

hCG2039140c rs1903908 1.23 1.06, 1.44 4 0 1.03 0.42 0.58 1.00

Abbreviations: ACE, angiotensin-converting enzyme; ABCA1, ATP-binding cassette transporter A1; APOC1, apolipoprotein C1; APOE, apolipoprotein E;
CH25H, cholesterol 25-hydroxylase; CHRNB2, cholinergic receptor, nicotinic, beta 2; CST3, cystatin 3; DAPK1, death-associated protein kinase 1;
DFNB31, deafness, autosomal recessive 31; GAPDHS, glyceraldehyde-3-phosphate dehydrogenase, spermatogenic; IL1b, interleukin-1b; LOC439999,
similar to ribosomal protein S3a; LPL, lipoprotein lipase; MAPT, microtubule-associated protein; NCSTN, nicastrin; POMT1, protein-O-mannosyltransferase
1; PON1, paraoxonase 1; PRNP, prion protein; SOAT1, sterol O-acyltransferase 1; SORCS1, sortilin-related VPS10 domain containing receptor 1; SORL1,
sortilin-related receptor, L(DLR class) A repeats-containing; TF, transferring; TFAM, transcription factor A, mitochondrial; TGFB1, transforming growth
factor, beta 1; TNF, tumor necrosis factor; UTR, untranslated region.

* P < 0.10 for an excess of O over E.
a The main results assume that the plausible effect in each meta-analysis is given by the summary effect (odds ratio) of the meta-analysis. Also shown are

results from evaluations using half of the log odds ratio (‘‘Sensitivity Analysis 1’’) as the plausible effect.
b Note that for this polymorphism, there is seemingly an excess of E over O—probably a chance finding resulting from the high number of analyses

conducted. The signal of this single nucleotide polymorphism is probably due to high linkage disequilibrium with the APOE e2/3/4 single nucleo-
tide polymorphism.

c This gene does not yet have an official name.
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DISCUSSION

We performed an empirical evaluation of significant find-
ings of genetic associations with Alzheimer’s disease in the
published literature. Examination of 175 eligible meta-
analyses containing a total of 1,348 studies documented
a clear excess of significant findings. However, this excess

was largely confined to meta-analyses that have not found
statistically significant associations, once data are standard-
ized to a common genetic model for all studies. For some
associations, evidence accumulates from studies with en-
tirely opposite results that eventually cancel out, when syn-
thesized to obtain a summary effect. This situation is
consistent with the well-described lack of replication docu-
mented in diverse fields of genetic associations (2, 41). At
its most extreme, it takes the form of the Proteus phenom-
enon, with rapid succession of contradictory results, some-
times even in the same article (38).

Significance-chasing probably reflects an unavoidable
phase of exploratory research that precedes the serious de-
termination of whether a particular association is ‘‘real.’’
Dissipation of early promising effects over time is an ap-
propriate evolution of knowledge that highlights the value

Figure 4. Ratio of observed (O) to expected (E ) numbers of studies
with results in a specific range of P values. A) All meta-analyses;
B) meta-analyses with significant results; C) meta-analyses with non-
significant results. Dotted lines correspond to 1, where O and E are
equal.

Figure 5. Ratio of observed (O) to expected (E ) numbers of studies
with results in a specific range of P values. A) Meta-analyses with I2 �
50% and nonsignificant results; B) meta-analyses with I 2 > 50% and
nonsignificant results. Dotted lines correspond to 1, where O and E
are equal.
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of meta-analyses. Inherently inflated early effects are also
theoretically and empirically documented in current
genome-wide association discovery approaches (3, 42).
The problem arises when additional false-positive findings
are not dissipated as promptly, thus remaining entrenched in
the literature. This is important to settle, because solid ev-
idence is needed to move from gene discovery to public
health impact (43).

For the 40 associations for which meta-analyses suggest
statistically significant summary effects, we did not docu-
ment a clear excess of significant findings. However, the
exploratory test lacks sufficient power to detect an excess
of significant findings in meta-analyses with few significant
studies. Moreover, bias may often inflate the treatment ef-
fect without a disproportionate increase in the number of
single studies with significant results. Under the assumption
that inflation doubles the observed effects, 8 of the 40 meta-
analyses give signals of an excess of significant studies.
Nevertheless, 5 of these 8 meta-analyses refer to variants
that either are in linkage disequilibrium with the APOE
epsilon polymorphism or are in genes that also show other
variants without a documented excess of significant find-
ings. Therefore, it is possible that some of these associations
are still real.

For the meta-analyses that found eventually significant
associations, we did document possible clustering of studies
in the 0.05–0.10 range of P values. Meta-analyses use a stan-
dardized approach in which all studies are analyzed accord-
ing to the same model—here, a per-allele analysis. Some of
the included studies may not be formally statistically sig-
nificant with this model, but other analyses may have
crossed the more traditional P¼ 0.05 threshold of statistical
significance.

An excess can herald either significance-chasing biases
or genuine between-study heterogeneity (27). In addition,
biases may generate between-study heterogeneity on their
own, if they affect some studies in the meta-analysis but
not others. The application of this test in a very large
genetic database helps us discriminate, at least in part,
between these possibilities. The most prominent excess
was seen in associations with studies describing statisti-
cally significant effects in the opposite direction. In the-
ory (44), associations may exhibit effects pointing in
opposite directions in different populations (‘‘genetic
flip-flop’’), particularly when linkage disequilibrium pat-
terns vary a lot across tested populations. However, ex-
treme differences in linkage-disequilibrium patterns
would have to be envisioned; the opposite effects are also
typically so extreme that this explanation is unlikely.
Probably, opposite effects reflect chance findings in a mi-
lieu of massive testing of associations, accompanied by
a preference for the dissemination of formally statistically
significant results and occasionally also prominent contra-
dictions of previous prominent claims (38). In all, the
excess of significant findings and the common between-
study heterogeneity in nonsignificant associations is prob-
ably largely due to bias rather than to genuine diversity
of genetic effects. Occasionally, the opposite results in
different populations may be assembled in the same pub-
lication, as in current genome-wide association investiga-

tions where several replication populations are genotyped
concurrently.

Some additional caveats should be discussed. First, the
estimates of between-study heterogeneity in meta-analyses
carry considerable uncertainty (45–47). The 95% confi-
dence intervals for I2 for most meta-analyses are wide. Thus,
heterogeneity in some associations may be misclassified.
Second, inferences regarding the excess of significant find-
ings or lack thereof in single meta-analyses should be tem-
pered by the low power of the test for single meta-analyses.
However, this is not a concern for domains combining many
meta-analyses. Third, one should be cautious about extrap-
olations to other diseases or more complex analyses and
associations (e.g., gene-gene and/or gene-environment in-
teractions). Observed heterogeneity may have different im-
plications in different fields.

With the advent of massive-testing technologies, new
challenges arise (3, 5), and significance-chasing biases
may still erode the credibility of accumulated evidence
(48). Only the most significant associations can now typi-
cally be reported in published papers on genome-wide as-
sociation studies. However, all of the additional testing
results should be available somehow; otherwise, publication
bias and selective analysis reporting bias are maximized.
Transparent availability of protocols and databases from
such studies and collaboration among research teams in
the same field should be facilitated (49, 50). Efforts to main-
tain up-to-date databases and to perform synopses of all of
the possible meta-analyses per field, as exemplified by Alz-
Gene (33), should be encouraged (1) to facilitate tracking of
the evolving strength of proposed genetic associations and
translation to their public health impact.
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