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Dairy intake has been inversely associated with insulin resistance, which may be partly due to the specific effects
of calcium and magnesium. Data from the Insulin Resistance Atherosclerosis Study (1992–1999) for 1,036 US
adults without diabetes at baseline were examined to evaluate the cross-sectional association of habitual dairy,
magnesium, and calcium intake with insulin sensitivity at baseline and after 5 years of follow-up. Insulin sensitivity
was directly measured with a validated, 12-sample, insulin-enhanced, intravenous glucose tolerance test with
minimal model analysis. Dietary intake was assessed by a validated food frequency interview, and dietary sup-
plement dose was confirmed by reviewing the supplement label. Several statistical approaches were used to
ensure appropriate modeling of the dose-dependent association. No association was found between dairy intake
and insulin sensitivity (p ¼ 0.41); however, associations were positive for magnesium and calcium intake (p ¼
0.016) after adjusting for demographic, nondietary lifestyle and dietary factors, and food groups. Furthermore,
magnesium intake was associated with insulin sensitivity in a threshold fashion, with a Bayesian method–estimated
threshold (325 mg) (b ¼ 0.0607/100 mg, p ¼ 0.0008 for <325 mg of magnesium/day; and b ¼ –0.001/100 mg,
p¼ 0.82 for�325 mg of magnesium/day). This study suggests that magnesium and calcium intake specifically, but
not dairy intake, is associated with insulin sensitivity.

calcium; dairy products; insulin resistance; magnesium

Abbreviations: AIC, Akaike’s Information Criterion; BIC, Schwarz’s Bayesian Information Criterion; IRAS, Insulin Resistance
Atherosclerosis Study; SI, insulin sensitivity index.

Dairy intake has been inversely associated with insulin
resistance (1, 2) and type 2 diabetes (3). This finding may be
partly due to the associations of some single nutrients in
dairy products, such as magnesium and calcium, with in-
sulin sensitivity. Magnesium has been postulated to play
a role in glucose homeostasis and insulin action (4, 5). Sev-
eral cross-sectional studies have observed an inverse asso-
ciation of plasma or erythrocyte magnesium with fasting
insulin or the risk of type 2 diabetes (6–8). These findings
indicate a potential role of magnesium status in the patho-

genesis of type 2 diabetes. Magnesium intake is believed to
be important in maintaining magnesium homeostasis (4).
An inverse association between magnesium intake and the
risk of type 2 diabetes has been found in most (9–13), but
not all (14), prospective studies. Calcium has been shown
to be associated with hypertension and obesity, components
of the insulin resistance syndrome (15–18). One clinical
trial found that calcium supplementation reduced fasting
plasma insulin and increased insulin sensitivity in nondia-
betic, essential hypertensive patients (19). However, there
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has been limited population-based research on the rela-
tion of dairy, magnesium, and calcium intake with insu-
lin sensitivity, especially with regard to a dose-dependent
relation.

It is important to examine the dose-dependent association
for magnesium and calcium to find the optimal intake with
respect to health-related outcomes, because excessive in-
take of magnesium and calcium could cause adverse effects
such as decreased absorption of other minerals (20, 21). In
epidemiologic research, one of the common approaches to
evaluating the association is to classify the continuous ex-
posure variable into several categories by percentiles and
then to compare the outcome values among these categories.
This approach could be used to assess the association with-
out any strong assumptions, but it fails to take advantage of
the continuous nature of data. A linear relation is frequently
assumed in the dose-dependent association for continuous
variables. Instead of being strictly linear, the dose-dependent
association could be exhibited in a threshold fashion, which
means that the strength of the linear relation would change
when the exposure value attains the threshold point.

A threshold estimated from experience or percentiles is
commonly used in the threshold relation. This approach
might not be appropriate because an inaccurate threshold
estimate could potentially underestimate or overestimate
the underlying relation (22). The maximum likelihood
method (23–25) and Bayesian method (26–28) have been
developed to improve estimation of the threshold by fully
utilizing all the information from the data, but wider use of
these methods has been impeded by the difficulties in ana-
lytical and numeric analysis. Recently, the Markov Chain
Monte Carlo method, an easy-to-apply sampling method to
simulate distributions for unknown parameters by using
mathematical methods, has been applied in the Bayesian
approach to estimate the threshold (29–31). The conceptual
simplicity of the Markov Chain Monte Carlo methods
proves an attractive alternative to the analytical and numeric
sophistication required by other methods in the Bayesian
approach.

Methods for evaluating dose-dependent associations, es-
pecially for estimating the data-driven change point in the
threshold effect, are rarely reported in epidemiologic re-
search. Therefore, this study examined the cross-sectional
association of habitual dairy, magnesium, and calcium
intake with insulin sensitivity by using multiple statistical
approaches to ensure appropriate modeling of the dose-
dependent association. We used a Bayesian approach with
the Markov Chain Monte Carlo method to objectively esti-
mate the threshold. In addition, we examined possible me-
diation by magnesium and calcium of an association
between dairy intake and insulin sensitivity, should such
an association be detected.

MATERIALS AND METHODS

Study design

The multicenter Insulin Resistance Atherosclerosis Study
(IRAS) explored the cross-sectional associations among in-
sulin resistance and its risk factors in a large, multiethnic

population. A baseline examination was conducted from
October 1992 to April 1994. A total of 1,624 adults aged
40–69 years were recruited from four clinical centers in San
Antonio, Texas; San Luis Valley, Colorado; Los Angeles,
California; and Oakland, California. By design, sufficient
numbers of individuals in different age, sex, ethnic, and
glucose tolerance groups were included to enable efficient
study of relations between and among these groups. The
5-year follow-up examination of the IRAS cohort began in
February 1998 and was completed in July 1999. The re-
sponse rate for the follow-up examination was 81 percent.
More details of the IRAS study design have been reported
previously (32).

Participants

Participants with type 2 diabetes at baseline were ex-
cluded from our analysis to avoid bias, because the diagno-
sis of type 2 diabetes generally leads to changes in dietary
habits (33). This exclusion led to a total study sample of
1,087 nondiabetics. For participants lost to follow-up, who
developed diabetes, or whose glucose tolerance status was
unknown (n ¼ 329) at the follow-up examination, we used
their baseline data only. Thus, there were 992 nondiabetic
participants at baseline and 663 nondiabetic participants at
follow-up who had both diet and insulin sensitivity data. The
combined data analysis incorporating baseline and follow-
up was limited to those participants for whom diet and in-
sulin sensitivity data were available for at least one of the
two examinations (n ¼ 1,036).

Variable measurements

Clinical measures. At baseline and follow-up, a clinical
examination was conducted, which consisted of two 4-hour
visits 1 week apart. Prior to each visit, participants were
asked to fast for 12 hours and to refrain from drinking al-
cohol and participating in vigorous activity for 24 hours and
from smoking on the day of the visit. A 2-hour 75-g oral
glucose tolerance test (Orange-dex; Custom Laboratories,
Baltimore, Maryland) was administered during the first
visit. World Health Organization criteria (34) were used to
determine glucose tolerance status. Individuals currently
taking oral hypoglycemic medications were assumed to
have type 2 diabetes regardless of the results of the oral
glucose tolerance test.

Insulin sensitivity was measured during the second visit
by using the frequently sampled intravenous glucose toler-
ance test (35) with minimal-model analysis (36). Two mod-
ifications were used: injection of insulin rather than
tolbutamide (37) and a reduced number of plasma samples
(12 rather than 30) (38). Glucose, in the form of a 50 percent
solution (0.3 g/kg of body weight), and regular human in-
sulin (0.03 U/kg) were injected over a 3-hour period. De-
fined as the dependence of fractional glucose disappearance
on plasma insulin (39), the insulin sensitivity index (SI) was
calculated by mathematical modeling methods: the time
course of plasma glucose was fitted by using nonlinear
least-squares methods with the plasma insulin value as
a known input into the system (MINMOD (36)). The unit
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of insulin sensitivity is (minute�1 � pmol�1 � liter) 3 10�5;
for a one-unit increase in 10�5 pmol/liter of plasma insulin,
there will be an increase of 1 percent/minute in fractional
glucose disappearance. A higher SI value indicates better
insulin sensitivity, and a zero value of SI indicates being very
insulin resistant (40).

Dietary intake. Usual dietary intake of foods and nu-
trients over the past year before baseline and follow-up
was assessed by a 114-item food frequency questionnaire
modified from the National Cancer Institute–Health Habits
and History Questionnaire (41, 42) to accommodate re-
gional and ethnic food choices. The nutrient database
(HHHQ-DIETSYS Analysis Software, version 3.0; National
Cancer Institute, Bethesda, Maryland, 1993) was expanded
to account for additional foods on the IRAS food frequency
questionnaire based on values obtained from the Minnesota
Nutrition Data System (program version 2.3; Nutrition Co-
ordinating Center, University of Minnesota, Minneapolis,
Minnesota, 1990). Among participants who took nutritional
supplements, usual frequency (number of pills per day,
week, or month) and dosages were queried. Calcium and
magnesium dosages were confirmed from product labels
and summed across all products that contained calcium
and magnesium. The validity and reproducibility of this
questionnaire to measure intake of nutrients has been dem-
onstrated in a subset of IRAS participants (43). Magnesium
and calcium intake were calculated as the sum of intake
from foods and supplements. Total dairy product intake
was calculated as the sum across all dairy-containing food
items in the respective food groups, including milk, milk
drinks, butter, cheese, cottage cheese, yogurt, and ice cream.
Usual alcohol intake was evaluated by using the food fre-
quency questionnaire with additional questions about recent
use and average lifetime use. Participants were classified as
drinkers if their alcohol intake was greater than zero and
nondrinkers if their alcohol intake was zero.

Other measurements. Standardized interviewing proce-
dures were used to assess smoking status, which was clas-
sified as current smoking, past smoking, and never smoking.
Ethnicity was determined by self-report. Body mass index
was calculated as weight in kilograms divided by height in
meters squared. Physical activity was assessed as usual fre-
quency of vigorous activity by using five predefined re-
sponses that ranged from ‘‘rarely to never’’ to ‘‘5 or more
times per week’’ (44, 45). Family history of diabetes was
defined as at least one parent or sibling being diagnosed with
diabetes.

Statistical methods

Descriptive statistics. Approximately 5 percent of partic-
ipants had an SI value of zero, and the distribution of SI
skewed to the right. Therefore, a constant was added to all
values of SI, and then the log transformation of the sum (Log
(SI þ 1)) was used as the outcome variable. With this trans-
formation, the distribution of resulting residual values ap-
proached normality. This approach has been used in other
IRAS analyses (46, 47). Sample means, standard deviations,
medians, and frequencies were calculated for all character-
istics of interest. Calorie-adjusted Pearson’s correlation co-

efficients between exposure variables (dairy, magnesium,
and calcium intake), insulin sensitivity, and other relevant
mediators or confounders were calculated at baseline and at
follow-up separately.

Modeling approach for the dose-dependent association.
Adjusting for demographic factors and other potential
confounders in a stepwise manner, we used the following
exploratory methods to elucidate the possible shape of dose-
dependent associations without any assumption: we com-
pared insulin sensitivity among categories of each exposure
variable classified by quintiles and plotted insulin sensitivity
across each exposure variable in the smoothing scatter plots,
such as the locally weighted, running-line smoother. The
following four modeling approaches for the dose-dependent
association were used to search for the appropriate associ-
ation with insulin sensitivity for each exposure variable:

1. Quintile model: the exposure variable was classified into
five categories by quintile according to the respective
distribution.

2. Linear model: assuming a linear association, the expo-
sure variable was included as a continuous variable.

3. Quadratic model: assuming a nonlinear association, the
continuous exposure variable and its quadratic terms
were included.

4. Threshold model: assuming a threshold relation, the
model included two continuous variables representing
exposure lower than and greater than the threshold. A
Bayesian approach with the Monte Carlo method was
used to estimate the threshold.

The general linear model was used to examine dose-
dependent associations at baseline and follow-up separately.
After confirming internal consistency of the association
between baseline and follow-up, a likelihood-based linear
mixed model was used to assess the association of each
exposure variable with insulin sensitivity, incorporating
baseline and follow-up.

The linear mixed model is one of the powerful statistical
methods used to analyze repeated-measures data (48–51).
The basic assumption is that the repeated measures for each
subject are from an unobserved, multivariate normal distri-
bution (48). In this study, insulin sensitivity values from
baseline and follow-up for each participant were assumed
to follow a bivariate normal distribution, with the means
determined by the fixed effects of exposure variable and
covariate, where the fixed effect means that the regression
coefficients for the exposure variable and covariates were
assumed to be fixed parameters and were the same between
baseline and follow-up. Subject-specific random intercepts
were included in the linear mixed model to allow for het-
erogeneity between subjects and to indirectly generate a
within-subject covariance structure, where the subject-specific
random intercepts were assumed to follow a bivariate nor-
mal distribution. These random intercepts could account for
unobserved covariates that induce dissimilarities in insulin
sensitivity between subjects not properly accounted for by
the observed exposures and covariates. By directly model-
ing the covariance structure, the linear mixed model greatly
improves analysis of repeated-measures data by providing
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a valid standard error (within-subject) and efficient statistics
tests (51).

In the linear mixed model, the covariance structure was
determined first. A restricted maximum likelihood estima-
tion method was used to calculate fit statistics, Akaike’s
Information Criterion (AIC) and Schwarz’s Bayesian Infor-
mation Criterion (BIC), to find the best covariance structure
(52). AIC and BIC are computed as follows: AIC ¼ �2L þ
2P and BIC ¼ �2L þ PLog (N), where L is the maximized
log likelihood, P the number of parameters, and N the sam-
ple size (52). A smaller value indicates a better fit. For all
exposure variables, an unstructured covariance structure fit
the data better than other covariance structures did. There-
fore, an unstructured covariance structure was used in all
linear mixed models.

Different approaches to modeling dose-dependent associ-
ations were compared based on the goodness-of-fit statistics—
model R squared—in the general linear model and on AIC
and BIC in the linear mixed model. AIC penalizes for
number of parameters only; BIC penalizes for number of
parameters and sample size (48). After we determined the
covariance structure, the maximum likelihood estimation
method was used in calculating the fit statistics. Consistent
evidence from the exploratory statistical methods and
goodness-of-fit statistics for different modeling approaches
were used as the criteria to determine a dose-dependent
association. The model with the fewest assumptions about
the does-dependent association, the quintile model, was
chosen if there was no consistent evidence.

The association of each exposure variable with insulin
sensitivity was first evaluated after adjustment for demo-
graphic factors (age, sex, ethnicity and clinical center, total
calorie intake, and family history of diabetes). Additional
potential confounders determined from previous work, such
as nondietary lifestyle factors (smoking, drinking, and phys-
ical activity), dietary factors (dietary protein, fat, fiber, cal-
cium, or magnesium intake), food groups (refined and whole
grains, fruit, vegetables, fish, and meat), and body mass in-
dex, were adjusted for in a stepwise manner to assess the
associations. Separate analyses were conducted for the total
study sample and for the nonsupplement users of magne-
sium or calcium.

Change point estimation. With the same distribution as-
sumption as for the linear mixed model, a Bayesian ap-
proach with the Markov Chain Monte Carlo method (31)
was used to estimate the threshold. Insulin sensitivity at
baseline and follow-up were assumed to have a bivariate
normal distribution, with an unstructured covariance matrix
and an expected value explained by exposure variables and
covariates. Exposure variables and covariates were assumed
to be fixed effects, the change point was assumed to be
uniformly distributed within the range of the middle 95
percent of the exposure variable distribution, and regression
coefficients of the exposure variable were assumed to be
different between values less than and greater than the
change point. All of the regression coefficients were given
a prior normal distribution with mean zero and a large var-
iance (10,000), and the covariance matrix was given a prior
Wishart distribution. Convergence was checked by examin-
ing the Gelman and Rubin diagnostic test (53) and the time-

series plot of two separate chains. After attaining conver-
gence, the posterior mean of the change point was used as
the estimator of the change point.

WinBUGS software (version 1.4; Imperial College and
Medical Research Council, Cambridge, United Kingdom)
was used for the Bayesian analyses. All other statistical
analyses were performed by using the SAS statistical soft-
ware program (version 8.2; SAS Institute, Inc., Cary, North
Carolina). All p values were two sided, and p < 0.05 was
defined as significant.

RESULTS

Descriptive characteristics of the study participants at
baseline are presented in tables 1 and 2. The average SI was
2.17 (standard deviation, 2.03) (minute�1 � pmol�1 � liter)3
10�5. The mean daily dairy intake was about 1.02 (standard

TABLE 1. Descriptive characteristics of participants without

diabetes at baseline (n ¼ 1,087), Insulin Resistance

Atherosclerosis Study, United States, 1992–1994

Characteristic Mean (SD*) or %

Age (years) 54.83 (8.44)

Gender

Male 43.6

Female 56.4

Ethnicity

African American 26.5

Hispanic 33.5

Non-Hispanic White 40.0

Family history of diabetes 41.4

Smoking

Never 45.3

Past 38.2

Current 16.5

Physical activity

Rarely/never 28.7

1–3 times/month 18.9

1 time/week 13.2

2–4 times/week 28.6

>4 times/week 10.6

Alcohol drinker 57.7

Glucose tolerance status

Normal 66.0

Impaired 34.0

Body mass index (kg/m2) 28.47 (5.72)

Insulin sensitivity
(minute�1 � pmol�1 � liter) 3 10�5 2.17 (2.03)

Magnesium supplement user 5.4

Calcium supplement user 17.2

* SD, standard deviation.
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deviation, 0.73) servings. The average daily magnesium in-
take from diet and supplements was 403 (standard deviation,
288) mg. For the 5 percent of participants who took magne-
sium supplements, themedian dosewas 100mg. The average
daily calcium intake from diet and supplements was 970
(standard deviation, 647) mg. About 17 percent of the par-
ticipants took calcium supplements, and the median dose
was 500 mg. Positive correlations were found for dairy,
magnesium, and calcium with insulin sensitivity and among
them (table 3).

Results of the linear mixed models

Similar results for dairy, magnesium, and calcium intake
were obtained from separate baseline and follow-up analy-
ses (results not shown), which met the assumption for the

linear mixed model. Therefore, this paper presents results
from the linear mixed model.

Association of dairy intake with insulin sensitivity. Dairy
intake was not statistically significantly associated with in-
sulin sensitivity after we adjusted for demographic factors
(figure 1). Further adjustment for nondietary lifestyle fac-
tors, dietary factors, and food groups including magnesium
and calcium intake did not change the association (results
not shown).

Association of magnesium intake with insulin sensitivity.
The quintile model (figure 1) and smoothing scatter plots
(results not shown) suggested a clear threshold association.
Bayesian analyses produced a threshold of 325 (standard
deviation, 99) mg, which was used in the threshold model.
Fit statistics for the quintile, linear, quadratic, and threshold
modeling approaches are shown in table 4. Compared with
the other modeling approaches, the threshold model had
the lowest AIC and BIC values, which suggested that the
threshold association fit the data best. Given the consistent
evidence from the different, above-described statistical
methods, the threshold model was chosen for reporting
the association of magnesium intake with insulin sensitivity.
As shown in table 5, magnesium intake was significantly
associated with insulin sensitivity when magnesium in-
take was lower than the threshold (b ¼ 0.0659/100 mg,
p ¼ 0.008) and was not associated with insulin sensitiv-
ity when magnesium intake was higher than the threshold
(b ¼ –0.0008/100 mg, p ¼ 0.87) after adjustment for
demographics, nondietary lifestyle factors, dietary factors

TABLE 2. Dietary intake of participants without diabetes at

baseline (n ¼ 1,087), Insulin Resistance Atherosclerosis Study,

United States, 1992–1994

Dietary factor Mean (SD*) Median

Total energy (kcal/day) 1,885 (821) 1,743

Dairy (servings/day) 1.02 (0.73) 0.89

Total magnesium (mg/day) 403 (288) 326

Dietary magnesium (mg/day) 398 (287) 319

Total calcium (mg/day) 970 (647) 807

Dietary calcium (mg/day) 836 (485) 722

Dietary protein (g/day) 77.69 (34.65) 72.01

Dietary fat (g/day) 74.71 (39.50) 67.05

Dietary fiber (g/day) 13.47 (5.78) 12.85

Whole and refined grains
(servings/day) 3.00 (1.57) 2.73

Vegetables (servings/day) 3.17 (1.89) 2.84

Fruit (servings/day) 2.29 (1.71) 1.96

Fish (servings/day) 0.24 (0.25) 0.17

Meat (servings/day) 0.98 (0.82) 0.81

* SD, standard deviation.

TABLE 3. Pearson’s correlations for insulin sensitivity (Log

(SIy þ 1)) and for dairy, magnesium, and calcium intake after

adjustment for total calorie intake at baseline (n ¼ 992), Insulin

Resistance Atherosclerosis Study, United States, 1992–1994

Measure
Log

(SI þ 1)
Dairy

(servings/day)
Magnesium
(mg/day)

Calcium
(mg/day)

Log (SI þ 1) 1.00 0.07* 0.09** 0.11***

Dairy 1.00 0.33*** 0.43***

Magnesium 1.00 0.42***

Calcium 1.00

* p < 0.05; **p < 0.01; ***p < 0.001.

y SI, insulin sensitivity index.

FIGURE 1. Differences in insulin sensitivity (Log (SI þ 1)) and upper
95% confidence intervals (vertical lines) according to quintiles of intake
of dairy products (number of servings), magnesium (milligrams), and
calcium (milligrams), with the lowest quintile as the reference group,
incorporating baseline and follow-up data for 1,036 participants in the
Insulin Resistance Atherosclerosis Study, United States, 1992–1999.
After adjustment for demographic factors; p value for overall effect:
dairy, 0.41; magnesium, 0.0001; calcium, 0.0005. SI, insulin sensitiv-
ity index.
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including calcium, and food groups. Furthermore, adding
body mass index slightly attenuated the association, but
magnesium intake was still significantly associated with in-
sulin sensitivity when magnesium intake was lower than the
threshold (b ¼ 0.0607/100 mg, p ¼ 0.008). A diagram-
matic graph of the linear and threshold association be-
tween magnesium intake and insulin sensitivity is shown
in figure 2.

Association of calcium intake with insulin sensitivity. The
quintile models (figure 1, table 6) and smoothing scatter
plots (results not shown) suggested an overall linear rela-
tion, but with a possible threshold association. Bayesian
analysis produced a threshold of 1,255 (standard deviation,
367) mg. The quintile, linear, quadratic, and threshold mod-
els were compared in terms of fit statistics (table 6). In
general, none of the four dose-dependent modeling ap-
proaches fit the data consistently better than other models
did. Therefore, we chose the quintile model to present the
association of calcium intake with insulin sensitivity
because it involved the fewest assumptions. As shown in
table 7, higher calcium intake groups were associated with
higher levels of insulin sensitivity after we adjusted for
demographics, nondietary lifestyle factors, dietary factors

including threshold magnesium intake, and food groups
(p ¼ 0.016 for overall effect). Further adjustment for body
mass index attenuated the overall effect to be nonsignificant
(p ¼ 0.13).

Similar associations for magnesium and calcium intake
were found for participants who did not use supplements of
magnesium or calcium (data not shown).

DISCUSSION

This study, incorporating data from baseline and 5 years
of follow-up, found no association between dairy intake and
insulin sensitivity. Positive and independent associations of
magnesium and calcium intake with insulin sensitivity were
identified, and these associations were independent of other
risk factors for insulin resistance. Furthermore, magnesium
intake was associated with insulin sensitivity in a threshold
fashion, which suggested that intake of more than the
threshold of 325 mg might not provide further benefit in
terms of insulin sensitivity. The association of calcium in-
take with insulin sensitivity did not appear to involve a
threshold.

TABLE 4. Goodness-of-fit comparisons of different modeling approaches for magnesium intake,

incorporating baseline and follow-up data for 1,036 participants in the Insulin Resistance

Atherosclerosis Study, United States, 1992–1999

Adjustment covariates
and fit statistics

Modeling approach

Quintile
model

Linear
model

Quadratic
model

Threshold
model

Model 1: Demographics*

AICy 2,088.0 2,095.3 2,089.8 2,083.8

BICy 2,186.9 2,179.4 2,178.8 2,172.7

Model 2: Demographics and nondietary lifestylez
and dietary§ factors

AIC 2,045.4 2,050.3 2,046.1 2,041.9

BIC 2,193.7 2,183.8 2,184.5 2,180.3

Model 3: Demographics, nondietary lifestyle and
dietary factors, and calcium intake (quintiles)

AIC 2,036.9 2,041.9 2,040.9 2,035.7

BIC 2,204.9 2,195.1 2,199.0 2,193.8

Model 4: Demographics, nondietary lifestyle and
dietary factors, calcium intake (quintiles), and
food groups{

AIC 2,042.2 2,046.0 2,045.0 2,041.2

BIC 2,234.9 2,223.9 2,227.9 2,223.8

Model 5: Demographics, nondietary lifestyle and
dietary factors, calcium intake (quintiles), food
groups, and body mass index

AIC 1,727.5 1,730.3 1,730.4 1,727.4

BIC 1,924.5 1,913.4 1,918.2 1,913.3

* Includes age, sex, ethnicity and clinical center, family history of diabetes, and total calorie intake per

day.

y AIC, Akaike’s Information Criterion; BIC, Schwarz’s Bayesian Information Criterion.

z Includes smoking, physical activity, and alcohol drinking.

§ Includes dietary protein, dietary fat, and dietary fiber.

{ Includes whole and refined grains, vegetables, fruit, fish, and meat.
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One strength of this study is that different dose-dependent
modeling approaches were used to evaluate the association,
especially the Bayesian approach with the Monte Carlo
method to estimate the threshold with the goal of improving
modeling of the threshold association. Linear association
was commonly assumed in assessing the relation; however,

this assumption would underestimate or fail to find the un-
derlying relation in the case of threshold association in the
studies with a limited sample size. In our study, the linear
model failed to find a statistically significant association of
magnesium intake with insulin sensitivity (table 4), whereas
the threshold model found a statistically significant associ-
ation when magnesium intake was less than 325 mg. Quin-
tiles of magnesium intake have been commonly used in
assessing the association of magnesium intake with fasting
insulin and the incidence of type 2 diabetes (12, 13), which
fail to take advantage of the continuous nature of magne-
sium intake. However, comparing the outcome values by
quintiles of exposure could help to explore the dose-
dependent association. In our study, the magnesium quintile
model suggested a possible threshold association.

When studying the threshold effect, the method of esti-
mating the threshold is critical. In this study, we used a
Bayesian approach with the Markov Chain Monte Carlo
method to estimate the threshold for magnesium intake.
The estimated threshold (325 mg) is close to the Recom-
mended Dietary Allowance of magnesium for this study
population (420 mg/day for men and 320 mg/day for
women) (20). The resulting threshold model detected a sig-
nificant association when magnesium intake was less than
325 mg and fit the data consistently better than other dose-
dependent modeling approaches did.

There are other strengths of this study. Each study subject
took part in two examinations 5 years apart, which enabled
determination of internal consistency and use of the linear
mixed model to summarize the associations and improve
the power of data analysis. As a repeated-measures regres-
sion analysis, the linear mixed model helps to uncover the

TABLE 5. Association of magnesium intake with insulin sensitivity (Log (SI* þ1)), incorporating baseline and follow-

up data in the linear and threshold modeling approach (threshold, 325 mg) for 1,036 participants in the Insulin

Resistance Atherosclerosis Study, United States, 1992–1999

Adjustment covariates

Linear effect model

Threshold effect model

Magnesium
<325 mg

Magnesium
�325 mg

Change
in insulin

sensitivityy
p value

Change
in insulin
sensitivity

p value
Change
in insulin
sensitivity

p value

Model 1: Demographicsz 0.0097 0.030 0.0888 <0.0001 0.0038 0.42

Model 2: Demographics and nondietary lifestyle§
and dietary{ factors 0.0091 0.07 0.0803 0.0004 0.0050 0.33

Model 3: Demographics, nondietary lifestyle and
dietary factors, and calcium intake (quintiles) 0.0038 0.53 0.0721 0.003 �0.0005 0.92

Model 4: Demographics, nondietary lifestyle and
dietary factors, calcium intake (quintiles), and
food groups# 0.0027 0.61 0.0659 0.008 �0.0008 0.87

Model 5: Demographics, nondietary lifestyle and
dietary factors, calcium intake (quintiles), food
groups, and body mass index 0.0023 0.65 0.0607 0.008 �0.0010 0.82

* SI, insulin sensitivity index.

yChange in insulin sensitivity for every 100-mg increase in magnesium intake.

z Includes age, sex, ethnicity and clinical center, family history of diabetes, and total calorie intake per day.

§ Includes smoking status, physical activity, and alcohol drinking.

{ Includes dietary protein, dietary fat, and dietary fiber.

# Includes whole and refined grains, vegetables, fruit, fish, and meat.
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FIGURE 2. Comparison of the estimated dose-dependent associa-
tion of magnesium intake with insulin sensitivity (Log (SI þ 1)),
incorporating baseline and follow-up data for 1,036 participants in the
Insulin Resistance Atherosclerosis Study, United States, 1992–1999.
Here, magnesium intake was limited to <800 mg. In the linear model,
the slope is 0.0023/100 mg; in the threshold model, the slope is
0.0607/100 mg when magnesium intake is <325 mg and –0.001/
100 mg when it is �325 mg. Refer to model 5 in table 5 for the adjust-
ing covariates. SI, insulin sensitivity index.
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TABLE 7. Differences in insulin sensitivity (Log (SI* þ 1)) (mean (SE*)) according to calcium category (with the lowest (<501 mg/day)

as the reference group), incorporating baseline and follow-up data for 1,036 participants in the Insulin Resistance Atherosclerosis

Study, United States, 1992–1999

Adjustment covariates
Calcium intake quintile (mg/day) p for

overall
effect501–701 702–931 932–1,372 >1,372

Model 1: Demographicsy 0.0626 (0.0349) 0.0548 (0.0365) 0.1066 (0.0393) 0.1789 (0.0419) 0.0005

Model 2: Demographics and nondietary lifestylez
and dietary§ factors 0.0667 (0.0346) 0.0574 (0.0364) 0.1140 (0.0315) 0.1806 (0.0429) 0.0007

Model 3: Demographics, nondietary lifestyle and
dietary factors, and threshold effect of magnesium 0.0326 (0.0364) 0.0152 (0.0391) 0.0688 (0.0423) 0.1435 (0.0456) 0.007

Model 4: Demographics, nondietary lifestyle and
dietary factors, threshold effect of magnesium,
and food groups{ 0.0290 (0.0365) 0.0108 (0.0393) 0.0626 (0.0428) 0.1339 (0.0467) 0.0157

Model 5: Demographics, nondietary lifestyle and
dietary factors, threshold effect of magnesium,
food groups, and body mass index 0.0053 (0.0341) 0.0097 (0.0366) 0.0477 (0.0398) 0.0922 (0.0435) 0.1288

* SI, insulin sensitivity index; SE, standard error.

y Includes age, sex, ethnicity and clinical center, family history of diabetes, and total calorie intake per day.

z Includes smoking, physical activity, and alcohol drinking.

§ Includes dietary protein, dietary fat, and dietary fiber.

{ Includes whole and refined grains, vegetables, fruit, fish, and meat.

TABLE 6. Goodness-of-fit comparisons of different modeling approaches for calcium intake, incorporating

baseline and follow-up data for 1,036 participants in the Insulin Resistance Atherosclerosis Study, United States,

1992–1999

Adjustment covariates
and fit statistics

Modeling approach

Quintile
model

Linear
model

Quadratic
model

Threshold
model

Model 1: Demographics*

AICy 2,086.1 2,090.3 2,091.8 2,085.4

BICy 2,185.0 2,174.4 2,180.8 2,174.4

Model 2: Demographics and nondietary lifestylez
and dietary§ factors

AIC 2,040.3 2,044.4 2,045.7 2,039.0

BIC 2,188.6 2,177.8 2,184.1 2,177.4

Model 3: Demographics, nondietary lifestyle and
dietary factors, and threshold effect of magnesium

AIC 2,035.7 2,037.2 2,039.1 2,036.1

BIC 2,193.8 2,180.5 2,187.4 2,184.4

Model 4: Demographics, nondietary lifestyle and
dietary factors, threshold effect of magnesium,
and food groups{

AIC 2,041.2 2,041.9 2,043.9 2,041.4

BIC 2,224.0 2,209.9 2,216.8 2,214.4

Model 5: Demographics, nondietary lifestyle and
dietary factors, threshold effect of magnesium,
food groups, and body mass index

AIC 1,725.5 1,724.4 1,726.3 1,724.8

BIC 1,913.3 1,897.3 1,904.2 1,902.7

* Includes age, sex, ethnicity and clinical center, family history of diabetes, and total calorie intake per day.

y AIC, Akaike’s Information Criterion; BIC, Schwarz’s Bayesian Information Criterion.

z Includes smoking, physical activity, and alcohol drinking.

§ Includes dietary protein, dietary fat, and dietary fiber.

{ Includes whole and refined grains, vegetables, fruit, fish, and meat.
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underlying associations that the general linear model fails to
find by providing a valid standard error and efficient statis-
tics tests. Omission of participants for whom data on some
variables are missing in the general linear model could bias
the results, and the linear mixed model could include par-
ticipants for whom data on some, but not all, variables are
missing. In addition, our study directly measured insulin
sensitivity to assess its association with dairy, magnesium,
and calcium intake, while most studies use fasting insulin
levels to represent insulin sensitivity.

Limitations of this study relate mainly to its observational
nature, with the possibility of differential misclassification
and residual confounding. Overweight and obesity are the
main determinants of insulin sensitivity (54), and over-
weight and obese persons tend to underreport their dietary
intake (55). Thus, for insulin-resistant persons, the percent-
age of underreporting of dietary intake might be higher,
which might bias the association further away from the null.
Although we adjusted for potential confounders, the possi-
bility of residual confounding cannot be completely ruled out.

This study failed to find an association between dairy
intake and insulin sensitivity. Given that insulin sensitivity
is an underlying factor in the insulin-resistance syndrome
and the main predictor of diabetes, this finding is not con-
sistent with those from previous studies. Prospective studies
have found an inverse association of dairy intake with risk
of the insulin-resistance syndrome (1, 2) and type 2 dia-
betes (3). Different study outcomes might partly explain
the inconsistent results. In addition, the limited variability
of daily dairy intake in our study (interquartile range, 0.49–
1.40 servings) might have precluded detection of a true ef-
fect. Furthermore, dairy intake is a surrogate measurement
for nutrients and/or health-related behaviors, which is not
specific in terms of a biologic effect. On the contrary, insulin
sensitivity is a specific biologic measurement, which might
partly explain why the specific nutrients, magnesium and
calcium, instead of dairy, were associated with insulin sen-
sitivity. Further studies are needed to elucidate the associa-
tion of dairy intake with insulin sensitivity.

The positive association of magnesium intake with insu-
lin sensitivity in our study is consistent with previous stud-
ies. Several prospective studies have found a significant
inverse association between magnesium intake and diabetes
risk (9–13), and two magnesium supplementation studies
have found a beneficial effect of magnesium on insulin sen-
sitivity (56, 57). Furthermore, one cross-sectional study
found an inverse association between magnesium intake
and plasma levels of fasting insulin for overweight women
only (12). Limited studies have examined the association of
calcium intake with insulin sensitivity. One clinical trial
found that calcium supplementation (1,500 mg/day) for
8 weeks could increase insulin sensitivity in 20 nondiabetic,
essential hypertensive patients (19). In our study, we found
a positive association of calcium intake with insulin sensi-
tivity after taking into account demographics, nondietary
lifestyle and dietary factors including magnesium in a
threshold fashion, and food groups. Further adjustment for
body mass index attenuated the association for magnesium
and calcium intake, which suggested that body mass index
might be a potential effect confounder and/or mediator.

In conclusion, we found that magnesium and calcium
intake were independently associated with insulin sensitiv-
ity. Furthermore, intake of magnesium over a threshold level
might not provide further benefit in terms of insulin sensi-
tivity, which supports the importance of examining the dose-
dependent association for dietary intake.

ACKNOWLEDGMENTS

Conflict of interest: none declared.

REFERENCES

1. Mennen LI, Lafay L, Feskens EJM, et al. Possible protective
effect of bread and dairy products on the risk of the metabolic
syndrome. Nutr Res 2000;20:335–47.

2. Pereira MA, Jacobs DR, Van Horn L, et al. Dairy consumption,
obesity, and the insulin resistance syndrome in young adults:
The CARDIA study. JAMA 2002;287:2081–9.

3. Choi HK, Willett WC, Stampfer MJ, et al. Dairy consumption
and risk of type 2 diabetes mellitus in men. Arch Intern Med
2005;165:997–1003.

4. Saris NE, Mervaala E, Karppanen H, et al. Magnesium: an
update on physiological, clinical and analytical aspects. Clin
Chim Acta 2000;294:1–26.

5. Barbagallo M, Dominguez LJ, Galioto A, et al. Role of mag-
nesium in insulin action, diabetes and cardio-metabolic syn-
drome X. Mol Aspects Med 2003;24:39–52.

6. Ma J, Folsom AR, Melnick SL, et al. Association of serum and
dietary magnesium with cardiovascular disease, hypertension,
diabetes, insulin, and carotid arterial wall thickness: the ARIC
study. J Clin Epidemiol 1995;48:927–40.

7. Paolisso G, Barbagallo M. Hypertension, diabetes mellitus,
and insulin resistance: the role of intracellular magnesium.
Am J Hypertens 1997;10:346–55.

8. Rosolova H, Mayer O, Reaven GM. Insulin-mediated glucose
disposal is decreased in normal subjects with relatively low
plasma magnesium concentrations. Metabolism 2000;49:
418–20.

9. Salmeron J, Ascherio A, Rimm EB, et al. Dietary fiber, gly-
cemic load, and risk of NIDDM in men. Diabetes Care
1997;20:545–50.

10. Salmeron J, Manson JE, Stampfer MJ, et al. Dietary fiber,
glycemic load, and risk of non-insulin-dependent diabetes
mellitus in women. JAMA 1997;277:472–7.

11. Meyer KA, Kushi LH, Jacobs DR Jr, et al. Carbohydrates,
dietary fiber and incidence of type 2 diabetes in older women.
Am J Clin Nutr 2000;71:921–30.

12. Song Y, Manson JE, Buring JE, et al. Dietary magnesium
intake in relation to plasma insulin levels and risk of
type 2 diabetes in women. Diabetes Care 2004;27:
59–65.

13. Lopez-Ridaura R, Willett WC, Rimm EB, et al. Magnesium
intake and risk of type 2 diabetes in men and women. Diabetes
Care 2004;27:134–40.

14. Kao WH, Folsom AR, Nieto FJ, et al. Serum and dietary
magnesium and the risk for type 2 diabetes mellitus: the
Atherosclerosis Risk in Communities Study. Arch Intern Med
1999;159:2151–9.

15. Carlson LA, Olsson AG, Oro L, et al. Effect of oral calcium
upon serum cholesterol and triglycerides in patients with hy-
perlipidemia. Atherosclerosis 1971;1:391–400.

Dairy, Magnesium, Calcium, and Insulin Sensitivity 457

Am J Epidemiol 2006;164:449–458

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/164/5/449/83505 by guest on 19 April 2024



16. Karanja N, Morris CD, Rufolo P, et al. Impact of increas-
ing calcium in the diet on nutrient consumption, plasma
lipids, and lipoproteins in humans. Am J Clin Nutr 1994;5:
900–7.

17. McCarron DA, Resusser ME. Finding consensus in the dietary
calcium-blood pressure debate. J Am Coll Nutr 1999;18:
398S–405S.

18. Parikh SJ, Yanovski JA. Calcium intake and adiposity. Am J
Clin Nutr 2003;77:281–7.

19. Sanchez M, Sierra AD, Coca A, et al. Oral calcium supple-
mentation reduces intraplatelet free calcium concentration and
insulin resistance in essential hypertensive patients. Hyper-
tension 1997;29:531–6.

20. Standing Committee on the Scientific Evaluation of Dietary
Reference Intakes. Food and Nutrition Board. Institute of
Medicine. Dietary reference intakes for calcium, phosphorus,
magnesium, vitamin D, and fluoride. Washington, DC:
National Academy Press, 1997.

21. Whiting SJ, Wood RJ. Adverse effects of high-calcium diets
in humans. Nutr Rev 1997;5:1–9.

22. Hastie TJ, Tibshirani RJ. Generalized additive models. Lon-
don, United Kingdom: Chapman and Hall, 1990.

23. Quandt RE. The estimation of the parameter of a linear re-
gression system obeying two separate regimes. J Am Stat
Assoc 1958;53:873–80.

24. Hinkley DV. Inference about the intersection in two-phase
regression. Biometrika 1969;56:495–504.

25. Hinkley DV. Inference in two-phase regression. J Am Stat
Assoc 1971;66:736–43.

26. Bacon DW, Watts DG. Estimating the transition between two
intersecting straight lines. Biometrika 1971;58:525–34.

27. Ferreira PE. A Bayesian analysis of a switching regression
model: a known number of regimes. J Am Stat Assoc 1975;
70:370–4.

28. Smith AFM, Cook DG. Straight lines with a change-point:
a Bayesian analysis of some renal transplant data. Appl Stat
1980;29:180–9.

29. Gelfand AE, Hills SE, Racine-Poon A, et al. Illustration of
Bayesian inferences in normal data models using Gibbs sam-
pling. J Am Stat Assoc 1990;85:972–85.

30. Gelfand AE, Smith AFM. Sampling based approaches to
calculating marginal densities. J Am Stat Assoc 1990;85:
398–409.

31. Carlin BP, Gelfand AE, Smith AFM. Hierarchical Bayesian
analysis of changepoint problems. Appl Stat 1992;41:
389–405.

32. Wagenknecht LE, Mayer EJ, Rewers M, et al. The Insulin
Resistance Atherosclerosis Study (IRAS): objectives, design
and recruitment results. Ann Epidemiol 1995;5:464–72.

33. Shekelle RB, Stamler J, Paul O, et al. Dietary lipids and serum
cholesterol level: change in diet confounds the cross-sectional
association. Am J Epidemiol 1982:115:506–14.

34. Diabetes mellitus: report of a WHO study group. World Health
Organ Tech Rep Ser 1985;727:1–113.

35. Yang Y, You JH, Bergman RN. Modified protocols improve
insulin sensitivity estimation using the minimal model. Am J
Physiol 1987;253:E595–602.

36. Pacini G, Bergman RN. MINMOD: a computer program to
calculate insulin sensitivity and pancreatic responsivity from
the frequently sampled intravenous glucose tolerance test.
Comput Methods Programs Biomed 1986;23:113–22.

37. Welch S, Gebhart SSP, Bergman RN, et al. Minimal model
analysis of intravenous glucose tolerance test-derived insulin

sensitivity in diabetic subjects. J Clin Endocrinol Metab
1990;71:1508–18.

38. Steil GM, Volund A, Kahn SE, et al. Reduced sample number
for calculation of insulin sensitivity and glucose effectiveness
from the minimal model. Diabetes 1993;42:250–6.

39. Bergman RN, Ider YZ, Bowden CR, et al. Quantitative esti-
mation of insulin sensitivity. Am J Physiol 1979;237:
E214–E223.

40. Haffner SM, D’Agostino R Jr, Festa A, et al. Low insulin
sensitivity (Si ¼ 0) in diabetic and nondiabetic subjects in the
Insulin Resistance Atherosclerosis study. Diabetes Care
2003;26:2796–803.

41. Block G, Hartman AM, Dresser CM, et al. A data-based ap-
proach to diet questionnaire design and testing. Am J Epide-
miol 1986;124:453–69.

42. Block G, Woods M, Potosky A, et al. Validation of a self-
administered diet history questionnaire using multiple diet
records. J Clin Epidemiol 1990;43:1327–35.

43. Mayer-Davis EJ, Vitolins MZ, Carmichael SL, et al. Validity
and reproducibility of a food frequency interview in a multi-
cultural epidemiologic study. Ann Epidemiol 1999;9:314–24.

44. Manson JE, Nathan DM, Krolewski AS. A prospective study
of exercise and incidence of diabetes among U.S. male
physicians. JAMA 1999;268:62–7.

45. Wolf A, Colditz GA, Hunter D, et al. Validity of a self-
administered physical activity questionnaire in the Nurses’
Health Study II. (Abstract). Am J Epidemiol 1992;136:992.

46. Mayer-Davis EJ, Monaco JH, Hoen HM, et al. Dietary fat and
insulin sensitivity in a triethnic population: the role of obesity.
The Insulin Resistance Atherosclerosis Study (IRAS). Am J
Clin Nutr 1997;65:79–87.

47. Liese AD, Roach AK, Sparks KC, et al. Whole-grain intake
and insulin sensitivity: the Insulin Resistance Atherosclerosis
Study. Am J Clin Nutr 2003;78:965–71.

48. Greert V, Greert M. Linear mixed models for longitudinal data.
New York, NY: Springer, 2000.

49. Littell RC, Pendergast J, Natarajan R. Modelling covariance
structure in the analysis of repeated measures data. Stat Med
2000;19:1793–819.

50. Canna A, Laird NM, Slasor P. Using the general linear mixed
model to analyze unbalanced repeated measures and longitu-
dinal data. Stat Med 1997;16:2349–80.

51. Littell RC, Henry PR, Ammerman CB. Statistical analysis of
repeated measures data using SAS procedures. J Anim Sci
1998;76:1216–31.

52. SAS Institute, Inc. SAS/STAT user’s guide, version 8, Cary,
NC: SAS Institute, Inc, 1999.

53. Brooks SP, Gelman A. Alternative methods for monitoring
convergence of iterative simulations. J Comput Graph Stat
1998;7:434–55.

54. Olefsky JM, Kolterman OG, Scarlett JA. Insulin action and
resistance in obesity and noninsulin-dependent type 2 diabetes
mellitus. Am J Physiol 1982;243:E15–E30.

55. Prentice AM, Black AE, Coward WA, et al. High levels of
energy expenditure in obese women. Br Med J 1986;292:
983–7.

56. Paolisso G, Sgambato S, Gambardella A, et al. Daily magne-
sium supplements improve glucose handling in elderly sub-
jects. Am J Clin Nutr 1992;55:1161–7.

57. Rodriguez-Moran M, Guerrero-Romero F. Oral magnesium
supplementation improves insulin sensitivity and metabolic
control in type 2 diabetic subjects: a randomized double-blind
controlled trial. Diabetes Care 2003;26:1147–52.

458 Ma et al.

Am J Epidemiol 2006;164:449–458

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/164/5/449/83505 by guest on 19 April 2024


