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The authors propose a new statistical procedure that utilizes measurement error models to estimate missing
exposure data in health effects assessment. The method detailed in this paper follows a Bayesian framework that
allows estimation of various parameters of the model in the presence of missing covariates in an informative way.
The authors apply this methodology to study the effect of household-level long-term air pollution exposures on lung
function for subjects from the Southern California Children’s Health Study pilot project, conducted in the year 2000.
Specifically, they propose techniques to examine the long-term effects of nitrogen dioxide (NO2) exposure on
children’s lung function for persons living in 11 southern California communities. The effect of nitrogen dioxide
exposure on various measures of lung function was examined, but, similar to many air pollution studies, no
completely accurate measure of household-level long-term nitrogen dioxide exposure was available. Rather,
community-level nitrogen dioxide was measured continuously over many years, but household-level nitrogen
dioxide exposure was measured only during two 2-week periods, one period in the summer and one period in
the winter. From these incomplete measures, long-term nitrogen dioxide exposure and its effect on health must be
inferred. Results show that the method improves estimates when compared with standard frequentist approaches.

air pollution; Bayesian analysis; bias (epidemiology)

Abbreviations: FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.

Adequate assessment of environmental exposures that
vary within communities in population-based epidemiologic
studies is limited by the expense involved in obtaining mea-
surements at multiple locations, often for prolonged periods.
An example is air pollution, for which studies of chronic
health effects have traditionally relied on continuous mea-
surements made at central-site monitors (1–4). Although
successful for demonstrating initial associations, central-site
measurements fail to capture the large variability in ex-
posures within communities that occurs near roadways and
stationary sources (5). Recent studies have shown that
within-community exposure gradients may be associated
with larger health effects than the between-community ex-
posures used in earlier studies (6–8).

This transition to studies using within-community expo-
sure gradients raises measurement and statistical issues. In
particular, local-scale monitoring information is needed to
calibrate and confirm exposure assignments, and there is
increased potential for measurement error in estimated ex-
posure. With the large uncertainty in exposure estimates,
questions remain about the validity of results from health
effects studies that use exposure surrogates based on incom-
plete information, such as road buffers or models fitted with
sparse monitoring data. The combination of large initial
health effects and the heightened potential for errors has
prompted researchers to identify the development of models
for assessing air pollution exposure within cities as a priority
for future research (9, 10).
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This paper focuses on developing improved exposure
models for assigning within-community variation in ambi-
ent traffic pollution to the Children’s Health Study, a pro-
spective study of schoolchildren in 12 communities in
southern California (1–4, 11–13). The Children’s Health
Study has already yielded important findings about the re-
lation between lung function growth and air pollution expo-
sure by between-community comparisons, but we now wish
to address the question of whether intraurban gradients in
exposure contribute to the relations observed with central-
site comparisons (14). The methods proposed utilize well-
studied measurement error techniques (15, 16) in estimating
these unobserved exposures.

MATERIALS AND METHODS

We propose an alternative method to address these two
measurement error problems in exposure assessment:
1) estimating ‘‘true’’ long-term exposure from flawed short-
term measurements and 2) estimating missing measurement
(or other covariate) information in locations where no mea-
surements have been made. We will utilize Bayesian Markov
chain Monte Carlo estimation methods (17) that model the
process through which the unobserved exposures are esti-
mated. Markov chain Monte Carlo methods can fit an entire
multilevel model as a unit, properly taking into account
parameter estimation uncertainty at each level of the model.

Data

We illustrate the methods using data from the Southern
California Children’s Health Study. In the Children’s Health
Study, continuous, long-term central-site measurements of
air pollution were made in multiple communities. Two sea-
sonal short-term household-level measurements were made
at a subset of study participant residences within communi-
ties to characterize local deviations from the community-
specific control site measurements at the same times. Using
the proposed methods, we estimated household-level long-
term residential exposures for persons with and without
seasonal exposure measurements, and these estimates were
used to evaluate the effect of air pollution on lung function
in children. This outcome has been well studied by use of
central monitors for ecologic, between-community compar-
isons (1, 4, 13, 18, 19), but there has been little study of the
effect of residential exposures that vary within communities.
The above-mentioned estimation procedures were per-
formed in a unified Bayesian framework.

The 12 Children’s Health Study communities were se-
lected to have different levels of exposure to ozone (O3),
nitrogen dioxide (NO2), and atmospheric particulate matter
with a diameter of 10 lm or less (PM10), based upon pre-
viously available air-monitoring data. (Note that the present
analysis is limited to 11 communities, excluding the moun-
tain community of Lake Arrowhead, for which home ad-
dresses could not be geocoded accurately.) Extensive
questionnaire data on demographic characteristics, health
outcomes, activities, and housing characteristics were ob-
tained at study entry and updated annually. Lung function,

height, and weight measurements were made at study entry
and annually up to high school graduation. Lung function
was measured by spirometry (13). For these analyses, we
have focused on forced vital capacity (FVC) and forced
expiratory volume in 1 second (FEV1) as the outcomes of
interest, as these have proven in our analyses to be sensitive
indicators of lung response to regional air pollutants. These
indicators of lung function evaluate the effects on both lung
volume (FVC) and airway flow (FEV1).

The locations of all schools and home addresses were
geocoded. Estimates of average nitrogen dioxide exposure
from traffic on freeways and major surface streets, as well
as predicted pollution exposures from mobile surfaces,
using the CALINE4 line source dispersion model (20) were
obtained.

The household pollution data that we have analyzed come
from a study conducted in the year 2000, in which outdoor
measurements of nitrogen dioxide concentrations were
made at 233 homes of Children’s Health Study children
during one 2-week period in the summer and one 2-week
period in the winter. Nitrogen dioxide was measured be-
cause vehicular traffic is the major source of local variability
in nitrogen dioxide in urban areas without major industrial
sources, and there is some evidence that nitrogen dioxide is
a good indicator of local variation in other traffic-related
pollutants, including fine and ultrafine particulate matter
(5, 10, 21). Unlike particulate pollution, nitrogen dioxide
can be measured unobtrusively at homes at a cost that allows
for multiple simultaneous samples.

Model

The aims of this paper are to model the determinants of
local variation in outdoor concentrations of nitrogen dioxide
in the Children’s Health Study in relation to traffic patterns
and to use this model to estimate long-term nitrogen dioxide
exposure. These estimated determinants will be used as
covariates in a model for lung function. In this context, ni-
trogen dioxide serves as a proxy for local traffic pollution
exposure. Our approach to this problem is grounded in the
statistical literature on exposure measurement error (15, 16, 22).

This analysis involves C ¼ 11 towns, denoted c ¼ 1, . . .,
C, with i ¼ 1, . . ., Nc individuals per town. Measure-
ments were made during two seasons, denoted j ¼ 1, 2. The
lung function measurements are denoted Yci, the observed
household-level exposure measurements Zcij, and the un-
observed annual household-level concentrations Xci. Here,
we let the subscript * indicate the average over the corre-
sponding index. We let Wci denote household-level expo-
sure variables that influence local concentrations, such as
distance from the nearest freeway and predicted nitrogen
dioxide concentration from the CALINE4 (20) line-source
dispersion model. The CALINE4 model incorporates dis-
tances from traffic densities on all major nearby roads
along with the frequency distribution of wind speeds and
direction. Personal covariates that influence lung function
directly, such as smoking, asthma, and respiratory illness
at the time of lung function measurement, are denoted Vci.
Our analytical framework consists of the following three
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submodels, hereafter called the disease, exposure, and
measurement models, respectively.

Yci¼AcþaðXci�Xc*ÞþVcih#þ eci ðdisease modelÞ ð1Þ

Xci¼BcþWcid#þ fci ðexposure modelÞ ð2Þ

Zcij¼XciþcðPcj�Pc*Þþgcij ðmeasurement modelÞ ð3Þ

We also model community-level random effects for the dis-
ease and exposure models as Ac ¼ x0 þ x1Pc* þ hc and
Bc ¼ b0 þ b1Pc* þ kc. Here, we let eci, fci, gcij, hc, and kc
represent normally distributed error terms with standard de-
viations re, rf, rg, rh, and rk, respectively.

Equation 1 models the effect of household-level long-
term nitrogen dioxide exposure along with the effects of var-
ious personal-level covariates on lung function. Equation 2
uses various household-level covariates to help predict the
long-term nitrogen dioxide exposure. Since we only have
household-level nitrogen dioxide measurements from two
time periods throughout the year for the 233 homes in the
study, we model the long-term level of nitrogen dioxide
exposure for individual i in community c, Xci, using equa-
tion 3. This modeled household-level long-term nitrogen
dioxide exposure will simply be referred to as ‘‘modeled’’
nitrogen dioxide exposure in the rest of this paper, but it
should be understood to estimate long-term exposure to
nitrogen dioxide in the home.

The overall model is depicted in figure 1. The joint dis-
tribution of all parameters in the model can be expressed as
follows:

f ðYjAc;a;X;V;h;reÞf ðaÞf ðhÞf ðreÞf ðAcjv;P;rdÞf ðvÞf ðrdÞ
3 f ðXjBc;W;d;rf Þf ðdÞf ðrf Þf ðBcjb;P;riÞf ðbÞf ðriÞ
3 f ðZjX;c;P;rgÞf ðcÞf ðrgÞ:

Bayesian estimation procedures

We set our model in a Bayesian framework and estimate
parameters using the Markov chain Monte Carlo method,
Gibbs sampling (17). One advantage of these procedures is
that missing data can be handled in a natural way. In this
technique, each parameter in the model is sampled from its
full conditional distribution, that is, the distribution obtained
by conditioning on all the other unknowns in the model.
Parameters, missing covariates, and latent variables are, in
a Bayesian context, seen as random variables, each of which
can be estimated using Bayesian parameter estimation tech-
niques. For example, if we let boldface indicate vectors of
household-level elements, such as X ¼ (X11, X12, . . ., XCI),
then, in each cycle of the Gibbs sampler, values of Xci are
updated from

f ðXcijdÞN f ðYcijXci;dÞf ðXcijWci;Pc*;dÞf ðZcijXci;Pci;dÞ;
where d indicates all relevant parameters for the distribution
in question. Even if observed household-level nitrogen di-
oxide measurements, Zcij, are missing for a particular Xci,
estimates can be obtained by the current estimates of all
the parameters in the model. In turn, each parameter in

the model is updated by use of all available data and current
updates of all other parameters in the model. In other words,
the relation between various facets of the model such as
Y, X, and Z can be obtained for the data that are available,
and these relations can be used to impute values for covar-
iates that are not available.

All Markov chain Monte Carlo analyses were conducted
using the WinBUGS software package (23). (This program
is available upon request from the first author of this paper.)
The Bayesian models were run for a burn-in of 20,000 iter-
ations, followed by 100,000 iterations that were stored to com-
pute posterior distributions. Diffuse priors were used on all
parameters. Regression parameters were assigned N(0, sN)
priors (here, sN denotes precision), with sN ¼ 1.0e – 12. Vari-
ance components were given flat uniform priors, U(0, sU)
as suggested by Gelman et al. (24), as opposed to conjugate
priors. We used sU ¼ 100 to define our vague prior for all
variance components. Throughout the analyses, all mea-
sures of nitrogen dioxide, both estimated and observed, dis-
tance to the nearest freeway, and CALINE4-predicted
nitrogen dioxide, as well as the outcome, Yci, were measured
on a log scale to satisfy the normality assumptions of the
models.

Prior sensitivity was examined by making the priors
tighter, that is, less vague. For instance, the effects of using
larger values of sN (e.g., sN¼ 1.0e – 6) and smaller values of
sU (e.g., sU ¼ 10) were examined. In general, the results
were quite robust to changes in these parameter values as
long as the prior specifications were sufficiently vague. The
sampler exhibited good convergence properties as well.

FIGURE 1. Schematic representation of the overall model used to
analyze data in the Children’s Health Study pilot project, conducted in
the year 2000. Note that, while not represented in the graph, the
random intercepts Ac and Bc are modeled by use of central-site
exposure measurements Pc*.
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Time-series plots of posterior parameter quantities indicated
that the mixing of the sampler was extremely good. Multiple
chains were run using different starting values, but the end
results were nearly identical for all chains. These features
indicate that the total of 120,000 iterations used was much
more than necessary to achieve convergence.

The interpretation of parameter estimates obtained when
using these kinds of log-log models corresponds to what is
commonly known in the regression literature as elasticity.
The coefficient in front of a particular covariate is inter-
preted as the percent change in the response, Y, correspond-
ing to a 1 percent change in the value of the covariate, X,
assuming that everything else in the model is held constant.
For example, if the model is log(Y) ¼ b0 þ b1 log(X) þ e,
then if b1 ¼ 0.2, a 10 percent increase in the value of X will
lead to a 2 percent change of 0.02 in the response Y.

Regression model comparisons

The data were also fitted to frequentist regression models
for comparison purposes. The basic model setup regresses
the observed seasonal nitrogen dioxide measurements on
traffic covariates and then uses this equation to predict mod-
eled nitrogen dioxide exposure, X̂ci: These predictions are
then used as covariates in the model for lung function, Yci, in
the second stage. The model setup consists of a measurement
and exposure models (equation 4) and a disease model
(equation 5):

Z̄ci¼ b0 þWcid#þ e1ci ð4Þ

Yci¼AcþðX̂ci� X̂c*Þa#þVcih#þ e2ci: ð5Þ

Here again, V denotes personal covariates, Z denotes local
nitrogen dioxide measurements, Ac ¼ x0 þ x1Pc* þ hc, and
residual errors follow normal distributions centered at zero.

The challenge in using the above model setup is to find
a way to predict the modeled measures of nitrogen dioxide
exposure, Xci in model 5, from observed seasonal measures,
Zci in model 4, in such a way that uncertainty in the estima-
tion process is properly taken into account. We will compare
our previously described Bayesian approach with three fre-
quentist regression approaches. In all three approaches, we
model nitrogen dioxide exposure in the second-stage model
(equation 5) by using the fitted values obtained from the
first-stage model (equation 4). The three approaches are de-
scribed below.

Naive model. Rather than modeling modeled nitrogen
dioxide exposure, we simply insert that seasonal outcome
from equation 5 into equation 4 as

Yci¼AcþðZci� Z̄cÞa#þVcih#þ eci: ð6Þ

Weighted single-imputation regression. Nitrogen dioxide
exposure was modeled by use of weighted regression tech-
niques, that is, X̂ci in equation 5 was set equal to EðZ̄ciÞ ¼
b̂0 þWcid̂#:

Multiple imputation. A total of K sets of multiple first-
stage nitrogen dioxide predictions were generated for each
person. These outcomes were sampled from the fitted dis-

tribution obtained in model 4, namely, NðX̂ci; r̂
2Þ; with r̂2

denoting the estimated residual error. New fitted values were
obtained for each set of generated outcomes, and these fitted
values were imputed into model 5, with each set of fitted
values imputed in the same manner as was done in the
single-imputation case. The parameter estimates obtained
from the corresponding K regressions were then combined
by use of multiple-imputation methods (25, 26). Results
obtained from multiple regressions based on imputed values
are combined with the PROC MIANALYZE procedure in
SAS software (27). For explanations of multiple-imputation
methods, refer to the books by Rubin (25) and Schafer (26).
The default value of K ¼ 5 imputations was used.

Comparison of results from these models serves as a use-
ful benchmark for our Bayesian methods. We chose to esti-
mate these frequentist regression models using the SAS
software package (27). This way, we can compare the re-
sults obtained from our unified Bayesian model with those
obtained from a standard frequentist analysis using a stan-
dard statistical software package.

RESULTS

The results depicted in table 1 show that the effects of
modeled nitrogen dioxide on lung function for FVC are
statistically significant and that the effects of nitrogen di-
oxide on FEV1 are marginally significant. Figure 2 displays
the posterior distributions for the parameter a, the effect of
modeled nitrogen dioxide exposure, Xci, on lung function for
both FVC and FEV1, and demonstrates that modeled nitro-
gen dioxide exposure clearly affects lung function in the
negative direction. For FVC, the probability Pr(a > 0)
equals p ¼ 0.019. Similarly, for FEV1, p ¼ 0.032. (These
quantities can be thought of as Bayesian one-sided p values.)
The distance to the nearest freeway provides little informa-
tion in estimating the level of modeled nitrogen dioxide
exposure when CALINE4-predicted nitrogen dioxide is in-
cluded in model 2, since distance to freeway is one of the
factors included in the calculation of CALINE4-predicted
nitrogen dioxide. However, the coefficients take the ex-
pected sign, as an increase in distance from a freeway is
associated with a decrease in predicted modeled nitrogen
dioxide exposure.

Results obtained by use of frequentist models 4 and 5 are
summarized, along with the Bayesian results, in table 1. The
results pertaining to the effect of modeled nitrogen dioxide
exposure on lung function obtained from the Bayesian
model are the only ones that show significance when FVC
is used as an outcome. Moreover, Bayesian credible intervals
pertaining to this modeled nitrogen dioxide effect, the effect
of primary interest, are narrower than all the confidence
intervals obtained using frequentist approaches. It is also
important to note that results obtained from the frequentist
models relating to the effects of traffic-related covariates on
seasonal nitrogen dioxide exposures were calculated without
regard to the measure of lung function used in the second-
stage model 5. Consequently, the results here are the same
regardless of the measure of lung function used. The Bayes-
ian model uses a unified approach in estimating model
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parameter values, so the measure of lung function used af-
fects parameter estimates at all modeling stages.

A comparison of estimated modeled nitrogen dioxide
exposures obtained from the multilevel model with raw
seasonal and central-site estimates is depicted in table 2
with FVC used as the outcome. Results for FEV1 are similar.
With the Bayesian model, each modeled nitrogen dioxide
variable, Xci, has its own unique posterior distribution.
Individual-level means and standard deviations obtained
from these posterior distributions were obtained and then
used to provide the modeled nitrogen dioxide estimates for
all persons in a particular community. In other words, the
average of all posterior means and the average of all poste-
rior variances for the persons in a town were computed. Raw
estimates were obtained simply by averaging seasonal mea-
surements. At the community level, the nitrogen dioxide
estimates obtained from the Bayesian model correspond
roughly to the average of the seasonal and central-site
measurements.

It is informative to relate the range of intercommunity
estimates of modeled nitrogen dioxide listed in table 2 to
the parameter estimates obtained in table 1. For example, in
the town of Riverside, California, the estimated modeled

nitrogen dioxide exposure across persons was 36.31 parts
per billion (ppb) with a standard deviation of 5.510 ppb.
An interval of �2 standard deviations from the mean repre-
sents the range of nitrogen dioxide exposure present in this
community, excluding outliers. The lower endpoint of such
an interval is L ¼ 36.31 � 2 3 5.510 ¼ 25.29 ppb, and the
upper endpoint is U ¼ 47.33 ppb. An increase in modeled
nitrogen dioxide exposure from L to U represents an increase
of (47.33 � 25.29)/25.29 ¼ 87 percent. From table 1, we see
that the coefficient for modeled nitrogen dioxide is a �
�0.14 when FVC is used as the outcome. This means that,
if one were to compare a person having a modeled nitrogen
dioxide exposure equal to L ¼ 25.29 ppb with a person hav-
ing exposure equal to U ¼ 47.33 ppb, one would expect to
see, on average, a decrease in lung function of 87 3 0.14 ¼
12 percent, assuming that all the other parameters of the
model remain fixed.

DISCUSSION

The proposed modeling approaches use measurement
error techniques in a Bayesian setting to estimate mod-
eled residential nitrogen dioxide exposure at homes where

TABLE 1. Results for Bayesian and frequentist models, Children’s Health Study pilot project, conducted

in the year 2000*

FEV1y (% change) FVCy (% change)

Posterior
mean

95% confidence
interval

Posterior
mean

95% confidence
interval

Long-term nitrogen dioxidez,§

Bayesian model �0.145 �0.308, 0.009 �0.138 �0.275, �0.006

Frequentist models

Naı̈ve approach �0.048 �0.129, 0.032 �0.058 �0.129, 0.013

Weighted regression �0.210 �0.440, 0.020 �0.145 �0.341, 0.051

Multiple imputation �0.148 �0.311, 0.016 �0.127 �0.269, 0.014

True nitrogen dioxide
(% change)

True nitrogen dioxide
(% change)

Posterior
mean

95% confidence
interval

Posterior
mean

95% confidence
interval

Distance to freewayz,§,{
Bayesian model �0.027 �0.066, 0.014 �0.027 �0.068, 0.015

Weighted regression/multiple imputation# �0.040 �0.081, 0.001 �0.040 0.081, 0.001

Total CALINE4**-predicted nitrogen dioxidez,§

Bayesian model 0.239 0.163, 0.320 0.239 0.161, 0.317

Weighted regression/multiple imputation# 0.221 0.139, 0.303 0.221 0.139, 0.303

* Long-term nitrogen dioxide effects were computed for the Bayesian model and for frequentist models by use of

the naive approach, weighted regression, and multiple imputation.

y FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.

z Adjusted for age centered at 10 years, height, body mass index, gender, cohort, race, Hispanic ethnicity,

asthma status, any tobacco smoking in the last year, exercise, and any respiratory illness on the day of testing.

§ Centered at the town-specific mean.

{ Distance (m)/1,000.

# The effects here are the same for FVC and FEV1, since the naive model does not include measures of lung

function in the second-stage model to estimate first-stage effects on nitrogen dioxide.

** CALINE4, a dispersion model for predicting air pollution concentration (20).
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exposure was measured with error. The estimates relied on
residential measurements that contained error because of the
short duration of sampling, on predictors of exposure from
widely used dispersion models, and on modeled community
central-site air pollution measurements. Similar flawed in-
dicators of local exposure are common in air pollution ep-
idemiology and in studies of the effects of other exposures

that are expensive to measure at many locations within com-
munities. Therefore, this method provides an alternative
modeling strategy that may have applicability to exposure
assessment in many settings.

The approach is different because most previous studies
have either used one exposure estimate to represent modeled
exposure or simply weighted for the statistical uncertainty in
the estimates (6, 7), rather than building the uncertainty into
an integrated model. Alternative ad hoc approaches to im-
puting missing environmental exposures, such as using aver-
ages of covariate values, lack the integrated framework of
the methods we propose. By use of an explicit model for
missing values, a parameter estimation procedure such as
Markov chain Monte Carlo can be utilized that explicitly
takes these missing data into account. This integrated ap-
proach allows investigators to examine the specific effect of
interest, namely, the effect of modeled nitrogen dioxide ex-
posure on lung function.

The observed association of FEV1 and FVC with the
estimated residential exposure for all study participants sug-
gests that variability in exposure to traffic-related pollutants
may impair respiratory health. Few previous studies have
examined the association of childhood lung function with
variation within communities. A German study found sig-
nificant deficits in peak expiratory flow rates and maximal
expiratory flow rates associated with traffic counts near
schools (28). Heavy traffic, especially truck traffic, within
300 m of homes in the Netherlands was associated with
childhood deficits in both FVC and FEV1 (29), but a more
recent study by the same group, also examining the effects
of heavy truck traffic on nearby roads, found no associations
of traffic-related pollutants with lung function (30). In a
panel study of the acute effects on exhaled nitrogen oxide,
Koenig et al. (31) reported slightly larger associations for
personal measurements of atmospheric particulate matter with
a diameter of 2.5 lm or less (PM2.5) than for central-site

FIGURE 2. Posterior distributions for the effect of true nitrogen
dioxide (NO2) on lung function for the Children’s Health Study pilot
project, conducted in the year 2000. FVC, forced vital capacity; FEV,
forced expiratory volume.

TABLE 2. Comparison of raw seasonal and central-site estimates with estimated long-term nitrogen

dioxide, when forced vital capacity is the outcome, Children’s Health Study pilot project, conducted in the

year 2000

California city

Nitrogen dioxide estimates (ppb)

Summer (Z1) Winter (Z2)
Central site (Pc*)

(mean)

Long term (Xci)

Mean
Standard
deviation

Mean
Standard
deviation

Mean
Standard
deviation

Apline 19.960 4.996 19.027 7.673 12.742 16.399 1.440

Atascaero 12.070 4.662 15.708 8.230 12.541 13.298 1.190

Lake Elsinore 17.510 2.663 27.491 3.113 17.796 21.166 1.781

Lancaster 18.311 3.247 23.299 2.929 16.679 18.826 1.645

Lompoc 5.344 1.456 13.861 4.188 3.758 11.366 0.984

Long Beach 34.034 5.911 48.466 11.314 33.694 39.916 3.445

Mira Loma 37.174 4.335 48.471 3.735 24.532 37.884 3.171

Riverside 38.436 7.195 42.837 7.556 25.387 36.315 3.023

San Dimas 51.399 5.647 50.781 7.127 34.715 50.691 4.120

Santa Maria 13.215 4.600 17.479 3.247 11.484 15.184 1.326

Upland 46.317 7.172 35.708 5.881 38.271 39.124 3.370
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monitor estimates. This study lends support to the idea that
more precise measurements of exposure may uncover larger
respiratory effects, but the panel design and personal expo-
sure measurements cannot practically be applied to larger
populations.

Our results are consistent with an emerging consensus
from between-community comparisons that regional pollut-
ants, such as fine particulate matter, which are measured at
community monitors and which may more uniformly cover
entire communities, cause deficits in lung function (1, 4, 18,
19). In addition, variation in exposure within communities
has been associated with childhood asthma in some (32–36),
but not all (28, 37–39), studies. Inconsistencies between stud-
ies may be explained in part by poor exposure assessment (5).
Therefore, this approach may be useful for assessing the
impact of local traffic on other Children’s Health Study out-
comes, such as asthma and lung function growth, and in other
studies of the health effects of ambient air pollution.

This project is conceptually similar to numerous other
studies that use the main-study/validation-substudy para-
digm (40). Here, we provide a unified framework for the
analysis of such studies by modeling simultaneously the
relation between X and Z in the substudy data and by using
this information to model the relation between Yand Z in the
main study by integrating over the unobserved Xs. In our
context, this would entail using the information from the
pilot study analyzed in this paper to make inference regard-
ing the effect of modeled nitrogen dioxide exposure on lung
function for all persons in the entire Children’s Health
Study, based on the surrogate variable traffic density (and
ultimately spatial correlations, as discussed below). Further
investigation is required to examine the statistical power
available to utilize the model derived from the substudy to
impute exposures to subjects in the main study. This will be
achieved through additional field measurements of nitric
oxide, nitrogen dioxide, and ozone at over 1,000 homes.
These spatially exhaustive measurements will be taken over
four seasons. Once available, the new measurements will be
utilized to extend the model into novel areas, including
spatial autocorrelation parameters for assessing exposure
and residual confounding, the assessment of multipollutant
effects, and formal simulation of power requirements for
extension from substudies to the entire cohort.

Beyond this application, the methods developed here may
have widespread applicability for environmental health
studies where incomplete, but potentially useful, exposure
measurements are available. As epidemiologists move to-
ward within-community studies of exposure, methods to
utilize data sets with missing exposure data will likely be-
come more important.
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